

Contextures: Representations from Contexts

Runtian Zhai, Kai Yang, Burak Varıcı, Che-Ping Tsai, Zico Kolter, Pradeep Ravikumar

Contexture theory: Representations are learned from the association between input X and context variable A

What representations do modern models learn?

- Transferability to downstream tasks completely different from pretraining?
- Representation similarity: Why different models learn similar representations?
- Scaling law: Are bigger models always better?

Result 1:	What i	epresent	tations	do we	really	learn?

Foundation models recover the space spanned by the top-d singular functions of T_{P} :

- Supervised learning
- Contrastive / noncontrastive learning
- Masked autoencoders
- Node representation learning on graphs

Informal Theorem:

Optimizer Φ of these objectives over $L^2(P_X)$ span the same subspace as the top-d singular functions of T_{P} +

$$\operatorname{span}(\phi_1,\ldots,\phi_d)=\operatorname{span}(\mu_1,\ldots,\mu_d)$$

Method	Input X	Context A
Supervised	Sample	Label of X
Contrastive	Image	Crop of X
LLMs (GPT)	Text	First k tokens
Vision- language	Image	Text caption

Result 2: When do these representations work?

The representation recovering the top-d eigenspace is optimal over the class of all compatible tasks

Informal: A task is compatible if Ahelps learn a predictor for it

 $\max_{g \in L^{2}(P_{A})} \frac{\langle f, T_{P^{+}} g \rangle_{P_{X}}}{\|f\|_{P_{X}} \|g\|_{P_{A}}}$ Compatibility:

Learn encoder $\Phi:\mathcal{X} o\mathbb{R}^d$

Intuition: models learn low-order spectral approximation of an implicit kernel induced by input-context pair

- Joint distribution: $P^+(X,A)$, marginals: P_X,P_A
- L^2 space: $f \in L^2(P_X) \implies E_{P_X}[f(X)^2] < \infty$
- Expectation Operator $T_{P^+}:L^2(P_A) o L^2(P_X)$

$$(T_{P^+}g)(x) = \mathbb{E}\left[g(A) \mid x\right]$$

- SVD of T_{P^+} : $\begin{cases} ext{sing. values: } 1=s_0\geq s_1\geq \cdots \geq 0 \\ ext{sing. func. } (\mu_i)\in L^2(P_X), \ (\nu_i)\in L^2(P_A) \end{cases}$
- $P^+(x,a) = \sum_{i>0} s_i \mu_i(x) \nu_i(a) P_X(x) P_A(a)$

Result 3: Empirical evidence and implications

Deep nets learn the top-d eigenspace empirically.

Implications for scaling laws

Increasing model size = diminishing returns

- Encoder converges to the top-d eigenspace
- When close enough, further scaling has little effect

Alignment of representations and true eigenfunctions (abalone dataset)

Result 4: Evaluating contexts

A metric to predict the downstream error

- Only depends on the singular values
- Strong correlation with error on real datasets (over 28 datasets, 0.43 mean, 0.58 median Pearson correlation)
- Selecting pretraining methods and hyperparams

$$\tau_d = \frac{1}{1 - s_{d+1}^2} + \beta \frac{\sum_{i=1}^d s_i^2}{\sum_{i=1}^\infty s_i^2}, \quad \tau = \min_d \tau_d$$

(diabetes dataset)