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Contexture theory: Representations are learned from the association between input X and context variable 4

: 2 Result 1: What representations do we really learn? !
What representations do modern models learn? P y Informal Theorem:

Foundation models recover the space spanned by the

* Transferability to downstream tasks completely Optimizer @ of these objectives over

top-d singular functions of T p+:

different from pretraining? L*(Py) span the same subspace as

* Supervised learning

. | | the top-d singular functions of T+
 Contrastive / noncontrastive learning .

 Masked autoencoders span(@s, ..., Pq) = span(fy, ..., lq)
* Node representation learning on graphs

m Result 2: When do these representations work? Informal: A task is compatible if A

Supervised Sample Label of X The representation recovering the top-d eigenspace helps learn a predictor for it
v< Is optimal over the class of all compatible tasks Compatibility: max (f, Tp+g)py
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LLMs (GPT) Text  First k tokens

Representation similarity: Why different models learn
similar representations?

Scaling law: Are bigger models always better?
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Intuition: models learn low-order spectral approximation der comverdes to the ton.d ciensoace 0.6
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* When close enough, further scaling has little effect b LA
Alignment of representations and true
* Joint distribution: P* (X, A), marginals: Px, P elgentunctions (abalone dataset)
» [“space: f e L*(Px) = Ep,[f(X)?%] < o0 Result 4: Evaluating contexts contexts with varying parameters
» Expectation Operator 7. : LQ(PA) s L2(PX) A metric to predict the downstream error 0] ) Eﬁi
v' Only depends on the singular values . 0.8 {|RBF « Masking
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(over 28 datasets, 0.43 mean, 0.58 median Pearson correlation) 0.6 { E
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