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Causal Representation Learning

unknown

transformation observed data

latent causal factors

Generic goal: Invert the unknown transformation to recover

1) latent representation and 2) the latent causal structure

g>£X = 9(2)}

e Identifiability: (im)possibility of uniquely™ recovering Z and G

observed
data

latent
space

e Achievability: provably correct and scalable algorithms
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existing literature: asymptotic guarantees (infinite samples)

What are finite-sample guarantees?
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Problem Setting

e Linear CRL: Transformation ¢ is linear, ie., X =G - Z
¢ Single-node soft interventions: Most general form
p7(2) = a2 | zoa) | [ 2325 | 2pai))
J71

e Finite sample data: NV samples of X per environment

Identifiability Objective
(¢,0)—PAC identifiability: The same infinite-sample identifiability guar-
antees with probability at least (1 — 9)
Infinite-sample guarantees:
e G, is equal to the transitive closure of G

A

e /; is a linear function of Z; U{Z, : j € pa(i)}

Main Tool: Score Differences

Define score function and score difference:

V.logpf(z) and d3(z)£ () - Y ()
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coordinates of parents of node ¢

dz () = 0)
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Score function and difference can be defined for X too
s (x) = VylogpX(z) and di(z) = s¥(x) — sk (x)
Observation space score differences are intimately related

dy(x) = (G - dg(z)
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Both inverse transform and latent graph information are

encoded in observed score differences.

Sample Complexity of Interventional
Causal Representation Learning
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Methodology
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Core observation: Using the image/column
spaces of d'y(x) suffice to recover both!
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Infinite-sample algorithm:
e Achieve identifiability using only column spaces of d (x)

e Check only matrix rank and subspace orthogonality

Finite-sample algorithm:
e Replace column space of d’ (x) with the approximate column space of El?(x)

e Show, using enough samples, with high probability,

rank(d'? () = est. rank(dy (1)) |,

similarly for approximate orthogonality.

Consider a generic consistent score (difference) estimator, i.e.,

[P (max
me|n|

Under a mild regularity assumption on pz that ensures the effect of an intervention
is distinct between Z; and Z,;,;),
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d'y (1) — d”"X”L(az)||2 > €> <5, VN> N6 .

Theorem (Sample complexity — general). For any consistent score difference
estimator with sample complexity N (e, §), we achieve (€, d)-PAC identifiability when

N > N (min{e€- K, €min},0)

where k and €,,;, are model constants.
Adopting a specific score estimator,

Theorem (Sample complexity — RKHS). Using a reproducing kernel Hilbert
space-based score estimator [1], we achieve (¢, d)—PAC identifiability when

(1 N\ 4 1 4
NZC-(max<—,c>> (—)
\6 / 5

where kK and €, are model constants.
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The first complexity result for interventional CRL.

(Constants are all exactly specified)
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e Linear Gaussian SEMs, Erdos—Rényi random graphs
(100 runs)

% 1.00 o ® % ® n=3
e Latent dimension n € {3,5,10}, observed di- :55*0-75 ¢ " ﬁ:io
mension d € {n, 15} %050 X
e Number of samples N & {102°5, 10%, 107, 104, %0-25 MR *
1045, 10°} G 0.00 SR T
10° 10 10 10

o Plot rate of perfect graph recovery vs MSE of Score estimation MSE

score estimator
Check out other score-based CRL work!

 General transformations: “General identifiability and achievability for causal representation
learning”. AISTATS 2024.

« Single-node interventions (base for this paper): “"Score-based causal representation: Linear
and general transformations”. arXiv: 2402.00849

 Multi-node interventions! "Linear Causal Representation Learning from Unknown Multi-node
Interventions”. NeurIPS 2024
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