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Most real causal systems are complex
e Time-varying systems: causal relationships can change over time
e Cyclic relationships: e.g., feedback loops

e Modeling subpopulations: e.g., subtypes of cancers do not share the
same exact biological pathways
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These complex models are better modeled by a mixture of DAGs!

Mixture Model
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e A mixture of (unknown) K DAGs over n nodes: {Gq,...,Gk}
e Mixture distribution:
Pmix — Z Wy * Py where Z Wy = 1
(e[K] le[K]
e [rue edges: exist in at least one component DAG
o Define mixture parents: pa,;, (¢) = Uy g Pa(i)

Challenges of causal discovery in mixtures
e Single DAG: Cl tests on observational data give the skeleton

e Mixture of DAGs: spurious unbrekable dependencies
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X1 and Xy are inseparable

X1 (1 — 2) is an emergent edge

X3
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Prior work on observational data

e FCI algorithm, graphical restrictions e.g. no cycles (Saeed et al. 2020)
e Longitudinal data, no solution for spurious (Strobl, 2023)

e Necessary-sufficient conditions for emergent edges (Varici et al. TMLR 2024)
(Separability Analysis for Causal Discovery in Mixture of DAGS)

Observational data is not sufficient

Interventional Causal Discovery in a

Mixture of DAGs

1 Dmitriy A. Katz?

Dennis Wei¢ Prasanna Sattigeri?

1Carnegie Mellon University 2IBM Research

Interventional Causal Discovery

Intervention model: For a subset of nodes I C |n], cut off parents
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o True edges: {(1—=2),(2—3),(3—2),(3=4),(1—4)}

e Mixture parents, e.g., pa;.(2) = {1,3} and pa .. (3) = {2}
e Spurious dependencies: {(1,3),(2,4)}

goal: identify true edges (or mixture parents) via interventions
1. Necessary and sufficient sizes of interventions

2. A learning algorithm with near-optimal interventions

Assume interventional mixture faithfulness (standard extension)

Theorem (intervention size): To find pa_ . (7) of via Cl tests

1. interventions with size |I| < |pa,. (7)| + 1 are sufficient

2. at the worst-case, |I| = |pa,,;.(7)| + 1 is necessary

Why? To determine whether j € pa ;. (?), I = pa,.. (7) U{j} suffices

Theorem (int. size - trees): For a mixture of trees
1. interventions with size |I| < K + 1 are sufficient

2. at the worst-case, |I| = K + 1 is necessary

Why? There are at most K paths from 5 to 7, one for each DAG
At the worst case (all disjoint paths), we need to block them all
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[Step 1. mixture ancestors/descendants via atomic interventions}

ﬁ. NEURAL INFORMATION
X PROCESSING SYSTEMS

Ali Tajer3

Learning Algorithm

desmix(?) = {j X A X} in pmix,{i}}

9 2 ancmix(1) = {2,5}
] ’3 1 3 ancmix(2) = {3,5}
G1 G anCpyix(3) = 0
ancmix(4) = 4{1,2,3,5}
5 4 5 4 ancmix(f)) — {1, 2}
Repeat steps 2, 3, 4 for all nodes 1 € V
[Step 2. Break cycles among ancestors ]

- C(7): all cycles among ancyix(7)

- B(7): minimal set that intersects with every cycle in C(1)
eg. C4)=1{(2,5,2),(2,1,5,2),(1,5,1)} — B(4) ={5}

L

- Cyclic complexity: 7; = |B(7)

- I =B()U{j} for all j € ancyix(?) to refine descendants

[ Step 3. Topological layering: refined descendant sets do not conflict!}

- Bottom-up layering: S1(4) = {1}, S9(4) = {2}, S3(4) = {3,5}

[ Step 4. lIdentify mixture parents: process each layer sequentially ]

- For every possible parent 7, intervene on B(i) Upa(i) U {j}

- e.g. I ={1,5} determines whether 1 € pa,., (4)

Theorem: Learns all true edges using O(n?) interventions,

with interv. size at most |pa .. (¢)| +7; + 1 for each node .

Optimality gap = cyclic complexity of node ¢

- Mixture of Gaussians, vary number of DAGs and graph size

- Strong performance for all settings.

- Empirical average cyclic complexity: less than 2 (for 10 nodes, K = 3)
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