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Abstract

Probabilistic graphical models (PGMs) are
effective for capturing the statistical depen-
dencies in stochastic databases. In many do-
mains (e.g., working with multimodal data),
one faces multiple information layers that can
be modeled by structurally similar PGMs.
While learning the structures of PGMs in
isolation is well-investigated, the algorithmic
design and performance limits of learning
from multiple coupled PGMs are not well-
investigated. This paper considers learning
the structural similarities shared by a pair of
Ising PGMs. The objective is to learn only
the shared structure with no regard for the
structures exclusive to either of the graphs.
This is significantly different from the exist-
ing approaches that focus on learning the
entire structures of the graphs. This pa-
per proposes an algorithm for learning the
shared structure, evaluates its performance
empirically and analytically, and compares
the performance with that of the existing ap-
proaches.

1 INTRODUCTION

Probabilistic graphical models (PGMs) are commonly
used for capturing the conditional interdependence in
probabilistic databases or random fields (Lauritzen,
1996; Pearl, 2009). Each vertex in a PGM represents a
random variable (RV), and the edges encode the inter-
dependence among the RVs. The complete structure
of a PGM is captured by the joint probability mea-
sure of all the random variables involved. PGMs offer
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a rich context for designing effective and tractable al-
gorithms for various inferential and decision-making
objectives in a broad range of technological, social, or
biological networks. Some examples include computer
vision (Won and Derin, 1992), genetics (Chen et al.,
2013; Fang et al., 2016; Dobra et al., 2004), and social
networks (Jacob et al., 2014).

There are various domains in which we face multiple
layers of information networks. Specifically, due to the
proliferation of sensing technologies, there is a grow-
ing trend of facing multimodal databases. Graphically
modeling such databases, as a result, involves multi-
ple PGMs, each corresponding to one data mode. For
instance, consider localizing anomalous events in net-
works. When a network’s behavior undergoes abnor-
mal changes, localizing the changes requires determin-
ing the discrepancies between the pre- and post-change
network models. In another example, consider dif-
fusion tensor imaging (DTI) and functional magnetic
resonance imaging (fMRI) for brain imaging. DTI and
fMRI images of a brain represent different structures
of the underlying brain network (Honey et al., 2007),
and their conformity of the two images can be lever-
aged to assess a brain’s cognitive health (Buckner and
DiNicola, 2019). Finding the maximum common sub-
graph in graph modeling of molecular structures in
biology is another application important for drug dis-
covery (Okamoto, 2020).

In this paper, we focus on learning the structural sim-
ilarities between a pair of PGMs. We emphasize that
our focus is on learning only the shared subgraphs
without any interest in the structures exclusive to the
individual graphs. A naive approach to this problem
is learning each of the graphs independently and then
searching for similarities. This approach is highly inef-
ficient since it learns the graphs completely, resulting
in unnecessarily learning the exclusive structures of
the graphs too. This compromises the efficiency (e.g.,
sample complexity), especially in large-scale graphical
models that have relatively small shared structures.

Learning the structure of a single graph, while be-
ing NP-hard (Chickering, 1996) in general, becomes
tractable under various restrictions on graph struc-
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tures (Yuan and Lin, 2007; Rothman et al., 2008;
Ravikumar et al., 2010; Banerjee et al., 2008; Anand-
kumar et al., 2010; Klivans and Meka, 2017). Relevant
studies to the scope of this paper are the structure
learning algorithms for tree-structured Ising models
in (Bresler et al., 2020); for loosely connected Ising
models with correlation decay in (Wu et al., 2013);
and for degree-bounded Ising models in (Anandkumar
et al., 2010; Bresler, 2015; Vuffray et al., 2016; Kli-
vans and Meka, 2017). A greedy learning approach for
structure learning is also proposed in (Bresler, 2015).
A convex optimization framework for structure learn-
ing is formalized in (Vuffray et al., 2016). An online
learning-based algorithm driven by the principles of
prediction with expert advice is proposed in (Klivans
and Meka, 2017).

While there exists rich literature on structure learning
of a single graph, achievable and fundamental limits of
structure learning from a group of related graphs are
not as well-investigated. These existing studies focus
on joint learning of all graphs in their entirety. The
existing studies include strategies for joint learning of
multiple graphical models that leverage the side infor-
mation about the similarities among different graphs.
In (Chen et al., 2013), an empirical Bayes method is
studied to identify interactions that are unique to each
class of cancers and that are common across all classes.
In (Fang et al., 2016; Guo et al., 2011; Danaher et al.,
2014; Mohan et al., 2014; Yang et al., 2015), joint in-
ference of Gaussian graphical models is studied using
graphical Lasso-based algorithms. Joint estimation of
the graph structures based on discrete data is studied
in (Guo et al., 2015). Information-theoretic bounds
on the sample complexity of joint learning of graphi-
cal models with their similarity as side information are
studied in (Sihag and Tajer, 2019a,b).

In a relevant problem, there exist studies on directly
estimating the difference between graphs. (Zhao et al.,
2014; Liu et al., 2014) study this problem for undi-
rected graphs, where (Wang et al., 2019; Ghoshal and
Honorio, 2019) consider causal linear structural equa-
tion models. This literature focuses on sparse discrep-
ancies between the graph pairs, i.e., the pair are over-
whelmingly similar.

In contrast to the studies mentioned above on learn-
ing the entire structures of structurally similar graphs,
and complementary to learning their differences, in
this paper, our objective is to learn only the common
edge structure between two graphs using their data
samples. Our focus is on Ising models with similarly
labeled vertices and freely distinct structures. The
subgraphs’ size and its location are unknown, and we
propose an algorithm for determining the size, iden-
tifying the location, and learning the structure of a
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Figure 1: Green vertices and the edges between them
represent the shared subgraph Gs.

subgraph shared by two distinct Ising models. In the
face of lack of any information about the shared struc-
ture’s size or location, a direct approach to learning the
shared structure involves learning both graphs entirely
and then finding their alignment. This approach will
inevitably learn the unshared parts, which translates
into severe inefficiency when our objective is learning
only the shared structure. To circumvent this, we de-
vise an adaptive algorithm that progressively prunes
the vertices deemed highly unlikely to belong to the
shared subgraph. We evaluate the effectiveness of
the proposed algorithm by experiments on synthesized
datasets and compare the performance of joint shared
structure learning with that achieved by the direct ap-
proach of learning the two graphs independently to de-
termine their shared structure in different regimes of
interest such as correlation decay (Anandkumar et al.,
2010) and bounded model width (Klivans and Meka,
2017; Wu et al., 2019).

2 GRAPHICAL MODELS

Consider two distinct undirected graphs G1 , (V,E1)
and G2 , (V,E2) over a set of vertices V , {1, . . . , p}.
The graphs are formed by two distinct collections of
undirected edges denoted by E1 ⊆ V × V and E2 ⊆
V × V . When there exists an edge between vertices
u, v ∈ V in graph Gi, we denote it by (u, v) ∈ Ei. The
set of neighbors of vertex u in graph Gi is denoted by

Ni(u) , {w ∈ V : (u,w) ∈ Ei} . (1)

The graphs are degree-bounded, with their maximum
degrees being upper bounded by d ∈ N. We say that
the edge (u, v) is shared by both graphs if (u, v) ∈ Ei
for i ∈ {1, 2}. The unknown set of edges that are
shared by both graphs is denoted by Es = E1 ∩ E2.
Accordingly, we define Vs as the set of vertices that
the edges in Es cover, and denote its size by q , |Vs|.
Finally, the graph formed by the vertices in Vs and the
edges in Es is denoted by Gs , (Vs, Es).

Ising model: We assume Ising models for both
graphs, and define Xu

i ∈ X , {−1, 1} as the random
variable associated with the vertex u ∈ V in graph Gi,
and define the random vector Xi , [X1

i , . . . , X
p
i ] as

the collection of the random variables in Gi. We define
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λ ∈ R+ to capture the dependence between the ran-
dom variables associated with the vertices in a graph.
The joint probability mass function (pmf) of random
vectors X1 and X2, denoted by f(X1,X2), is given by

f(X1,X2) =
1

Z12
exp

 ∑
(u,v)∈Es

λ(Xu
1X

v
1 +Xu

2X
v
2 )

+
∑

(u,v)∈Ẽ1

λXu
1X

v
1 +

∑
(u,v)∈Ẽ2

λXu
2X

v
2

 ,

(2)

where Z12 is the partition function that ensures
f(X1,X2) is a valid pmf, and we have defined Ẽ1 ,
E1\Es and Ẽ2 , E2\Es. The class of graphs associ-
ated with Gs is given by Isp and it is formally defined
as follows.

Definition 1 (Isp class). Define Ip as the class of Ising
models with p vertices, and define Isp ⊆ Ip as the class
of all valid subgraphs Gs that can be shared by two dis-
tinct Ising models with p vertices. A valid edge struc-
ture refers to any instance of a collection of edges that
form Es.

Furthermore, we define Isp(Gs) ⊆ Ip×Ip as the class of
all possible pairs of Ising models whose shared struc-
ture is given by Gs. We also denote the set of random
variables associated with Vs in Gi by Xs

i and those with
V \Vs by Xc

i . The marginal joint pmf of the random
variables Xs

i is given by

f̃(Xs
1,X

s
2)

, 1

|Isp(Gs)|
exp

 ∑
(u,v)∈Es

λ(Xu
1X

v
1 +Xu

2X
v
2 ))


×

 ∑
Xc

1,X
c
2

∑
(Ẽ1,Ẽ2)∈Isp(Gs)

1

ZẼ1,Ẽ2

× exp

 ∑
(u,v)∈Ẽ1

λXu
1X

v
1 +

∑
(u,v)∈Ẽ2

λXu
2X

v
2

 ,

(3)

where ZẼ1,Ẽ2
is a partition function associated with

pmf of the pair of Ising models with edge structures
Ẽ1 and Ẽ2 unique to G1 and G2, respectively. Clearly,
finding a closed-form for f̃(Xs

1,X
s
2) is intractable in

general (except for specific cases, such as connected
Gs in tree-structured graphs or isolated graph Gs) and
performing marginal inference on Ising models is an
open problem. We next provide the objectives and
performance metrics for learning the structure of Gs.

3 OBJECTIVES AND METRICS

Graph decoding. In this section, we formalize the
criterion for learning the structure of the shared sub-
graph and the attendant performance metrics. Our
objective is to learn only the structure of Gs based on
a collection of n samples generated by each graph. The
collection of n independent samples from Gi is denoted
by xni ∈ Xn×p. We formally define the graph decoder
to represent the algorithmic framework that uses sam-
ples from both graphs and estimates the shared struc-
ture.

Definition 2 (Graph Decoder). We define a graph
decoder ψs as a function that maps the data samples
to a subgraph in Isp, i.e.,

ψs : Xn×p ×Xn×p → Isp . (4)

Our objective is to perfectly learn the structure of
the shared subgraph Gs. Hence, an error event oc-
curs when ψ(xn1 ,x

n
2 ) 6= Es. In this paper, we charac-

terize the graph decoder ψ by providing an adaptive
algorithmic framework and empirically evaluating its
performance. In order to specify relevant performance
metrics for ψ in terms of number of samples, we first
provide a brief overview of the algorithm with its de-
tails specified in Section 4.

Algorithm Overview. We design an adaptive al-
gorithm based on the following premise. Given that
the size, the location, and structure of the subgraph
Gs = (Vs, Es) are all unknown, an attempt for directly
identifying it will inevitably require learning signifi-
cant fractions of the structures of both graphs G1 and
G2, well beyond only their shared graphs, thus, poten-
tially penalizing the efficiency (e.g., sample complex-
ity). Motivated by this, we devise an algorithm that
is focused on learning only Gs. We initialize our al-
gorithm by considering all vertices in V as candidates
for being in the shared subgraph. The set of vertices
of interest at the k-th iteration of the algorithm is
denoted by V̂s(k), where V̂s(0) = V . At every iter-
ation, we evaluate the empirical pairwise correlation
between the data samples of the pair of vertices that
could potentially be in Gs. If all pairwise empirical
correlations for a vertex fall below a certain threshold,
that vertex ceases to be of interest, and we stop collect-
ing new data samples from it. In parallel to pairwise
correlation-based pruning of the vertices of interest in
the graphs, we also run an online structure learning
algorithm with similar principles as adopted in (Kli-
vans and Meka, 2017), but with appropriate modifi-
cations to facilitate joint learning using samples from
two graphs.

Performance metrics. First, we collect nL graph
samples {(xk1 ,xk2) : k ∈ {1, . . . , nL}} one-at-a-time and
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evaluate V̂s(k) ⊆ V and (Ek1 ∩ Ek2 ) to form estimates
of Gs = (Vs, Es). We denote the probability of error in
recovering shared structures from a class of graphs Isp
by

PL(Isp) , max
G1,G2∈Ip

P(|Es∆Ês| 6= 0) , (5)

where ∆ denotes the difference between two edge sets,
i.e., E1∆E2 = (E1 \ E2) ∪ (E2 \ E1). For a structure
learning process, we evaluate the performance of our
algorithm for the exact recovery of shared subgraph in
two ways:

• The total number of algorithm iterations, denoted
by nT.

• The total number of measurements collected over
nT iterations, i.e.,

N(nT) ,
nT∑
k=1

|V̂s(k)| . (6)

If we collect samples from all vertices in each iteration,
we have N(nT) = pnT. However, since the number of
vertices in V̂s(k) potentially decreases over the itera-
tions, we expect N(nT) to be considerably smaller than
pnT for graph pairs with Vs ⊂ V .

4 STRUCTURE LEARNING

In this section, we provide Algorithm 1 for shared
structure learning, provide an insight into the logic of
the included steps, and characterize its sample com-
plexity under certain assumptions. Our algorithm
mainly relies on two ideas: pruning the set of ver-
tices of interest and jointly learning the edge structure
spanned by vertices of interest in the two graphs.

4.1 Similarity-based Pruning

We focus on localizing the vertices in Vs during the
structure learning, and hence, pruning the vertices
that are highly likely not to be a part of the shared sub-
graph. These decisions are made in an online manner,
and their objective is to form coarse decisions about
the vertices that are promising candidates for being
members of Vs, and therefore, are retained for further
scrutiny. In this part of the algorithm, as more data is
collected, the sampling resources progressively shift to
the vertices that are deemed to have a higher chance
of belonging to the shared subgraph. This facilitates
a significant reduction in the sampling complexity, as
observed in the experiments.

For k samples from vertices u and v, we define the
empirical pairwise mean of Xu

i and Xv
i as follows:

Ēk(Xu
i X

v
i ) , 1

k

k∑
`=1

xui (`)xvi (`) , (7)

where xui (`) represents the `-th data sample from
vertex u in Gi. We note that the pairwise correla-
tion in (7) is a sufficient statistic for capturing the
structure of Ising models in certain correlation-decay
regimes (Bento and Montanari, 2011). Using the em-
pirical pairwise correlations, we design the threshold-
ing rule for controlling false negative rates. Specifi-
cally, at iteration k, we include vertices u, v in V̂s(k) if
they meet the criterion:

min
i∈{1,2}

Ēk[Xu
i X

v
i ] > h(λ, α, p, k) , (8)

where we have defined

h(λ, α, p, k) , tanhλ−
√
α log p

2k
, (9)

and α > 2 controls the rate of false negatives. The ra-
tionale for the above choice of h(λ, α, p, k) will become
clear with the following lemma.

Lemma 1. The pruning rule specified in (8) with k
samples and setting h(λ, α, p, k) according to (9) en-
sures that P(Vs ⊆ V̂s(k)) ≥ 1− 2p2−α.

Proof. Note that for a vertex pair (u, v) that is
connected via an edge in an Ising model, we have
E[XuXv] ≥ tanhλ (Daskalakis et al., 2019). Using
the Hoeffding’s inequality (Hoeffding, 1994) to estab-
lish the the concentration bound around the true pair-
wise means, for any ε > 0, we have

P[|Ēk[Xu
i X

v
i ]− E[Xu

i X
v
i ]| ≤ ε] ≥ 1− 2

pα
, (10)

for k = α log p
2ε2 number of samples. This ensures that

by plugging ε =
√
α log p/2k in (10) and using (9) for

an edge (u, v), the relationship

Ēk[Xu
i X

v
i ] ≥ E[Xu

i X
v
i ]−

√
α log p

2k
≥ h(λ, α, p, k) ,

(11)

holds with a probability at least 1 − 2p−α. Taking
a union bound over all possible pairs in both graphs,
(11) holds for all such pairs with probability at least
(1 − 2p2−α). This implies that this decision rule (8)
guarantees that Vs ⊆ V̂s(k) with a probability not
smaller than 1− 2p2−α.
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Algorithm 1 Learning Shared subgraph Gs
1: Input α, β, V̂s(0) = V , Ês(0) = ∅, nL = nT + nM

pairs of data samples
2: Initialize κuvi (1) = 1/(|V |−1), κ̃uvi (1) = 1/(|V |−1)

and wuvi (1) = 0 for all u 6= v and i ∈ {1, 2}
3: for a new pair of data sample k ∈ {1, . . . , nT} do
4: for each pair u, v ∈ V̂s(k), u 6= v do
5: Calculate Ēk[Xu

1X
v
1 ] and Ēk[Xu

2X
v
2 ]

6: if (8) is satisfied then
7: Add (u, v) to Ês(k)
8: end if
9: Update the weights κ̃uvi (k + 1) =
κ̃uvi (k) exp(β/2)

10: end for
11: Pruning step: Construct V̂s(k) =
{u|∃v, (u, v) ∈ Ês(k)}

12: Get samples from V̂s(k) vertices on both graphs
and compute the losses `uvi (k)

13: Weight update step:
14: for each pair (u, v) ∈ V̂s(k), u 6= v do
15: Update the weights jointly κuvi (k + 1) ac-

cording to (14)
16: end for
17: for each pair (u, v) /∈ V̂s(k), u 6= v do
18: Update the weights κuvi (k + 1) =

κuvi (k) exp(β/2)
19: end for
20: for each pair u 6= v do
21: Compute wuvi (k + 1) via normalizing

κuvi (k + 1)
22: end for
23: Compute estimates Ek1 and Ek2 such that for

every pair u 6= v, (u, v) ∈ Eki if wuvi ≥ λ/2
24: Compute empirical risks εki using nM samples
25: end for
26: Compute m1 = argmink ε

k
1 and m2 = argmink ε

k
2

27: return Ês = Em1
1 ∩ Em2

2

4.2 Prediction-guided Structure Learning

Given the coarse estimate V̂s(k) at the k-th iteration,
we then focus on learning the internal graph struc-
tures of vertices in V̂s(k). For this purpose, we provide
a prediction-guided learning algorithm where we lever-
age the data samples only from the vertices in V̂s(k).
It is noteworthy that since the estimate V̂s(k) may be
imperfect and the internal structure of V̂s(k) may have
additional edges, the subgraphs spanned by these ver-
tices in the two graphs are not necessarily the same.

To formalize the learning process, corresponding to
each random variable Xu

i ∈ {−1, 1}, we define the
Bernoulli random variable Bui , 1

2 (1 − Xu
i ) and in-

stead of analyzing Xu
i we equivalently analyze Bui .

Accordingly, we denote the the k-th realization of Bui

by bui (k) = 1
2 (1− xui (k)). The prediction-guided algo-

rithm consists of two steps. Step 1 collects nT < nL

samples to form prediction-guided estimates for Es at
each iteration k. We note that since the estimate V̂s(k)
becomes more accurate with an increasing number of
samples, we need measurements from a gradually de-
creasing number of vertices. Once the predictions are
formed, we use the remaining nM , nL − nT samples
to form a final estimate for Gs in Step 2.

Step 1: Predicting Es. We start with the premise
that any pair of vertices in V̂s(k) can be potential
neighbors. Each vertex can act as an expert and pre-
dicts the value of its neighbors. In the k-th iteration,
at vertex u in Gi, we form a prediction for bui (k) by
aggregating the predictions provided by other vertices
in the graph for this vertex according to

b̂ui (k) = σ
(∑
v 6=u

κuvi (k)xvi (k)
)
, ∀k ∈ {1, . . . , nT},

(12)

where {κuvi } are the weights to be selected properly
and σ is the standard sigmoid function.

Loss function. To quantify the quality of the predic-
tions, for every pair u, v ∈ V̂s we evaluate the pairwise
loss function

`uvi (k) , 1

2

(
1 + [b̂ui (k)− bui (k)]xvi (k)

)
. (13)

Predictor Update. Note that V̂s(k) is formed with the
decision rule (8). Hence, for all pairs u, v ∈ V̂s(k), we
allow the transfer of loss functions between the graphs
for updating the multiplicative weights

κuvi (k + 1) = κuvi (k) · exp

(
β

2
[`uv1 (k) + `uv2 (k)]

)
,

(14)

where β is an appropriately set hyperparameter, for

instance β = log
(

1/(1 +
√

(log p/nT))
)

1. Otherwise,

if u, v /∈ V̂s(k), κuvi (k) is updated according to:

κuvi (k + 1) = κuvi (k) · exp (β/2) . (15)

Before continuing to the next step, we comment on
the multiplicative updates in (14) which facilitate joint
learning in our algorithm. We note that, indepen-
dently learning each graph corresponds to the algo-
rithm in (Klivans and Meka, 2017) that uses the fol-
lowing update for any pair u, v ∈ V :

κuvi (k + 1) = κuvi (k) · exp (β`uvi (k)) . (16)

1This choice allows us to leverage the standard Hedge
algorithm regret in proof of Theorem 1.
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If (u, v) lies in the shared subgraph Gs, then (14) cor-
responds to processing two graph samples at one step
rather than processing 1 graph sample independently
as in (16).

We illustrate the improvement of performance by us-
ing the mean of losses in the graphs for u, v ∈ Vs in
joint structure learning over the algorithm for learn-
ing a single Ising model in (Klivans and Meka, 2017)
in Section 5, and provide additional empirical results
in Appendix D.

Normalizing weights κuvi . Note that weight updates in
(14) and (15) do not ensure that the maximum neigh-
borhood weight of any vertex is bounded by λd (since
d is the maximum degree). Therefore, we introduce
normalized weights:

wuvi (k + 1) =
λdκuvi (k + 1)∑

x 6=u
(κuxi (k + 1) + κ̃uxi (k + 1))

, (17)

where κ̃uvi are pseudo-weights to handle vertices with
a degree less than d. The theoretical justification for
these pseudo-weights is discussed in Appendix A.

Predictions for Es. Using the coefficients {wuvi (k) : k ∈
{1, . . . , nT}} we perform thresholding tests to estimate
the internal structure of V̂s(k). Specifically, we form
two estimates, one corresponding to each graph:

Eki ,
{

(u, v) : wuvi (k) ≥ λ

2

}
, ∀i ∈ {1, 2}, (18)

for k ∈ {1, . . . , nT}. The processes described above
continue sequentially until all the nT samples are ex-
hausted.

Step 2: Estimating Es. Finally, to determine the
correct subgraph Gs, we collect additional nM samples
for vertices in V̂s(nT) and based on these, we assign a
risk metric to each predicted set Eki according to:

εki =
1

nM

nL∑
k=nT+1

∑
u∈V̂s(k)σ

∑
v∈Eki

−2wuvi (k)xvi (k)

− bui (k)

2

.

(19)

We select the predictions with the lowest empirical
risks. By setting mi , arg mink ε

k
i for i ∈ {1, 2}, we

form the final estimate as Ês = Em1 ∩ Em2 .

4.3 Sample Complexity

We remark that in specific scenarios such as when Gs is
an isolated subgraph or in the asymptote of Gs = G1 =

G2, the pmf f̃ becomes tractable and has closed-forms
that conform to distributions for an Ising model, which
facilitate theoretically characterizing the performance
of the proposed algorithm. The sample complexity of
the algorithm in a restricted setting is provided in the
following theorem.

Theorem 1 (Learning the shared subgraph). When
the graph Gs is isolated and marginal distribution of Gs
admits Ising model distribution, the sample complexity
of Algorithm 1 for ensuring P(Isp) ≤ (1− 2

ρ )(1−2p2−α)
is

O

(
1

λ2
exp(λd) log

ρq

λ

)
+O

(
1

λ2
log p

)
. (20)

We remark that the condition on the marginal dis-
tribution of Gs is too stringent in practical settings.
Therefore, to emphasize upon the algorithm’s applica-
bility in wider settings, the rest of the paper focuses on
empirical comparisons of Algorithm 1 with the exist-
ing structure learning algorithms in different regimes,
such as correlation decay and bounded model width.

Remark 1. The assumption that λ is uniform and
known is made for clarity in presentation. It can be
readily generalized to assume that (i) the edge weights
are non-uniform, (ii) they are not fully known, and
are only assumed to belong to a known range, i.e.,
λij ∈ λ ∈ [λmin, λmax]. All analytical guarantees will
still hold valid with proper adjustments. In Lemma 1,
we replace λ with λmin and in Theorem 1, we replace
exp(λd) with exp(λmaxd) and other λ terms with λmin.

5 EXPERIMENTS

In this section, we evaluate the performance of our al-
gorithm on synthetic data. Our experiments are eval-
uated on a broad set of graph structures to demon-
strate their applicability beyond the stringent assump-
tions made in Theorem 1. We compare Algorithm 1
against several baseline approaches that are character-
ized by independently learning two graphs and identi-
fying their shared structure afterwards. We consider
three ensembles of graphs: (i) S1: sparse Erdős-Rényi
random graphs G(p, c/p); (ii) S2: graphs with tree
structures; and (iii) S3: graphs with cyclic building
blocks with degree d ≤ 3. The figurative representa-
tions of these ensembles are shown in Fig. 3. For our
experiments, we generate graph pairs with 200 vertices
per graph for ensembles S1 and S3, and 255 vertices
per graph for S2. The edge structures are generated
such that the subgraph Es spans q = 20 vertices for
the graph pairs in S1 and S3, and q = 25 for the graph
pairs in S2. The results are reported for 100 random
realizations of the graph pairs.
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Figure 2: Probability of error PL for recovering Es with nL iterations.

a. Ensemble 1 b. Ensemble 2 c. Ensemble 3

Figure 3: Representative examples of a graph in three
ensembles used for analyzing the performance on sim-
ulated data.

Joint versus independent structure learning.
First, we study the final probability of error PL de-
fined in (5) in graph pairs with bounded width. Note
that an error may occur when either the pruning step
of estimating V̂s(k) fails to include a vertex u ∈ Vs in
V̂s, or the shared structure learning part fails to recover
the exact Es. We noted in Section 4.2 that removing
the pruning step and the update rule in (14) reduces
our algorithm to the algorithm in (Klivans and Meka,
2017) with update rule in (16) for a single graph. To
compare joint versus independent learning, we run the
algorithm in (Klivans and Meka, 2017) to learn struc-
tures of two graphs separately and then evaluate the
error in the shared subgraph of the estimates. Figure 2
illustrates this comparison in terms of the probability
of error versus increasing horizon, where horizon refers
to number of iterations. We observe that our algo-
rithm significantly outperforms the baseline approach
of (Klivans and Meka, 2017) in all three ensembles.

Comparison with correlation thresholding al-
gorithms. Computing and using empirical pairwise
means in our algorithm bear similarities to struc-
ture learning algorithms that work based on corre-
lation thresholding in the correlation decay regimes.
Thus, we compare our method’s performance to that
of the correlation thresholding (CT) Algorithm pre-
sented in (Anandkumar et al., 2010). In all ensembles,
average degree and λ are chosen appropriately for the

correlation decay regime.

In Fig. 4, we show this comparison by plotting the
error with respect to the number of vertex measure-
ments. Our joint learning of the shared subgraph out-
performs the dual approach that uses CT algorithm
independently on two graphs and identifies the shared
structure at the end. We note that the slow start of our
method is due to the initialization of the multiplicative
weight updates in the algorithm. Since each vertex is
initialized as a candidate neighbor for all the other
vertices, it usually takes some training for weights to
converge to the proper values. Eventually, we observe
significant gains in terms of sample complexity mea-
sure N(nT) defined in (6) as due to the adaptive aspect
of our algorithm, the algorithm gradually focuses on
sampling from the vertices that are more likely to be
in Gs.
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Figure 4: Joint shared subgraph learning and CT algo-
rithm in (Anandkumar et al., 2010) with N(nT) vertex
samples.

Comparison with sparse logistic regression al-
gorithms. (Wu et al., 2019) proposed an algorithm to
learn the structure of a single graph by solving an `1-
constrained logistic regression problem for the models
with bounded width. We apply this algorithm to learn



Learning Shared Subgraphs in Ising Model Pairs

two graphs independently and identify their shared
structure afterward. To speed up the convergence of
their mirror descent updates, we have modified this
algorithm with stochastic mirror descent. We run the
simulations on random graph pairs from G(p, 2/p) that
has |Vs| = p/10 and λ = 0.2.

Figure 5 offers a number of observations. First, we
note that time complexity of the algorithm in (Wu
et al., 2019) scales with Tp2, where T is the number of
iterations for mirror descent updates and T scales with
1/ε4, where ε is the bound for the norm of the error on
parameter estimates (see (Wu et al., 2019) for details).
This indicates that for a successful structure learn-
ing, time complexity grows quickly, especially in large
graphs. To illustrate this effect, we run the algorithm
of (Wu et al., 2019) for {1000, 1250, 1500, 2000, 3000}
samples with T = 100 (red dots) and T = 250 (green
dots) iterations. We plot the number of samples for
our algorithm both in terms of graph samples and ver-
tex samples per graph, where the latter is significantly
smaller. Notice that N(nT)/p is plotted in Fig. 5 to
illustrate the comparison with (Wu et al., 2019) that
uses p vertex measurements for a graph sample.
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Figure 5: Comparison with (Wu et al., 2019) with re-
spect to nT and N(nT).

Varying the edge parameter λ on sparse ran-
dom graphs. Next, we study the performance for dif-
ferent edge parameters λ on random graphs G(p, 2/p).
Note that the average degree is chosen to be small so
that we will stay in the bounded width regime. Fig-
ure 6 shows that for moderately large enough values
of λ, our algorithm can achieve a small probability of
error. On the other hand, we note that sample com-
plexity of our algorithm scales with 1/λ2 for a fixed
model width. Hence, we expect a performance drop
when λ becomes too small.

Varying the average degree of sparse random
graphs. We note that our pruning decision rule in (8)
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Figure 6: Performance of our method for various λ
values.

is degree independent, and the multiplicative weight
updates for structure learning use the maximum de-
gree value only for normalizing the weights. More
details can be bound in Appendix A. Next, we cre-
ate random graphs G(p, c/p) with p = 200 vertices,
λ = 0.2 and c ∈ {1, 2, 3, 4, 5}, where c denotes the
average degree. Figure 7 shows that our algorithm re-
covers the shared structure with similar error rates for
sparse random graphs with reasonably small average
degree values.

Finally, we remark that our sample complexity is ex-
ponential in model width λd. For random graphs with
large values of p, the degree of a vertex follows a Pois-
son distribution. Moreover, the maximum of these
p random variables grows quickly (see (Briggs et al.,
2009) for details). Hence, either model width becomes
large and sample complexity grows exponentially, or λ
happens to be too small to stay in the bounded width
regime, which in turns scales the sample complexity
with 1/λ2 and still requires a large number of samples.
Therefore, we observe that our algorithm does not per-
form well for the exact recovery of the shared structure
when the random graphs become denser (higher aver-
age degree).

Additional experiments. Evaluation of additional
aspects of the algorithm, such as the effect of subgraph
size, the effect of errors in pruning stage, comparison
with a joint learning algorithm that aims to learn the
graphs in their entirety, and an application for analysis
of the U.S. Senate voting records data are provided in
Appendix D.

6 CONCLUSION

The novel problem of learning the shared structure
between two Ising models has been considered. An
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Figure 7: Performance of our method for various av-
erage degree values

algorithmic framework has been proposed, which, in
contrast to the existing works, is focused on learn-
ing the structure of only the shared subgraph between
the two graphs. The sample complexity of the frame-
work has been characterized for specific scenarios. The
performances of the framework have been numerically
evaluated in various ensembles of graphs and shown to
outperform naive approach of separately learning two
graphs for three baseline approaches.
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A Algorithm Details

We add a few notes on some steps of Algorithm 1 that are necessary for the implementation.

• Normalization of weights: Note that the weight updates in (14) and (15) do not guarantee that
∑
v∈V̂s

κuvi ≤

λd for all u ∈ Vs in Gi. Therefore, we introduce the normalized weights wuvi which are evaluated in the k-th
iteration as

wuvi (k + 1) =
λdκuvi (k + 1)∑

x 6=u
(κuxi (k + 1) + κ̃uxi (k + 1))

. (21)

• Pseudo-weights: We introduce the pseudo-weights κ̃uvi to accommodate for the setting when the degree
of u or v vertex is strictly less than d. The theoretical justification behind the introduction of these weights
is included in Appendix B.

• Dummy weight updates: We note that update of pseudo-weights as κ̃uvi (k+1) = κ̃uvi (k) exp(β/2) implies

that these are not affected by the loss and mere technical components. Similarly, for the vertices u, v /∈ V̂s(k),
we do not have samples from them to compute luvi (k) at the k-th iteration and update their corresponding

weights using (14). Therefore, updates in (15) refer to keeping the corresponding weights for u, v /∈ V̂s(k)
pairs effectively unchanged.

B Sample Complexity Analysis

Note that our algorithm consists of two subroutines that are executed in tandem. The first subroutine relates to
the pruning of the set of V vertices to adaptively focus on the pairwise relationships among the vertices in Vs.
The second routine is the joint learning of the shared structure in the graph pair which leverages multiplicative
weight updates to the vertices of interest in every iteration. For our sample complexity analysis, we assume that
Vs forms an isolated subgraph in both G1 and G2. This assumption allows us to leverage different properties of the
Ising model that are necessary for establishing a closed form of the sample complexity. Furthermore, for analysis
under this assumption, we can decouple the two subroutines in the following manner: We first evaluate the
number of samples that is needed to localize Vs with a high likelihood. Next, we evaluate the sample complexity
of joint learning of the shared subgraph Gs after Vs has been localized with high likelihood.

B.1 Isolating Vs vertices through pruning

Before we give the sample complexity analysis for the joint multiplicative weight updates, we will show that the
pruning step of the Algorithm 1 localizes Vs correctly in the correlation decay regime.

We start by providing the following lemma, which is instrumental in establishing the edge-level decisions.

Lemma 2. In a ferromagnetic Ising model G = (V,E) if the minimum distance between two vertices u, v ∈ V is
` > 1 and λ satisfies tanh(λ) ≤ 1/(L + 1), where L is the maximum number of paths between any two vertices,
then we have

tanh`(λ) ≤ E[XuXv] ≤ (L+ 1) tanh2(λ) . (22)

Proof. For an Ising model, the lower bound on the correlation between any two vertices relates to the shortest
path between them (Anandkumar et al., 2010, Lemma 3). This provides the lower bound in (22), where the
shortest path between u and v vertices have length ` > 1. Note that for any graph G, the upper bound on the
correlation, stated by (Anandkumar et al., 2010, Lemma 3), is bounded as follows:

E[XuXv] ≤ min
b≥`

b∑
t=`

Nt(u, v) tanht λ+ |Bb(u)| tanhb(λ) , (23)

where Nt(u, v) is the number of paths between u and v of length t and Bb(u) is the set of vertices in the self-
avoiding walk tree of G at a distance b from vertex u. Therefore, in (23), by using Nt(u, v) ≤ L, tanht λ ≤ tanh2 λ,

|Bb(u)| ≤ L(L− 1) and |Bb(u)| tanhb(λ) ≤ tanh2 λ for any b ≥ log(L(L−1))
log(L+1) , we get the upper bound in (22).
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Now following from the proof of Lemma 1, for any ε > 0 and k = α log p
2ε2 samples, we have

P[Ēk[Xu
i X

v
i ] ≥ tanh(λ)− ε] ≥ 1− 1

pα
, ∀(u, v) ∈ Ei, (24)

P[Ēk[Xu
i X

v
i ] ≤ (L+ 1) tanh2(λ) + ε] ≥ 1− 1

pα
, ∀(u, v) /∈ Ei. (25)

Taking a union bound over all possible pairs in both graphs, (24) and (25) hold with probability not smaller
than 1 − 2p2−α. Now notice that if lower bound of an edge (u, v) ∈ Es is higher than the upper bound of a
non-edge (u, v) /∈ Es, then the thresholding decision in (8) also removes the spurious edges with high probability.
Formally, if the following equations hold true,

(L+ 1) tanh2(λ) + ε < tanh(λ)− ε , (26)

ε =

√
α log p

2k
<

tanh(λ)(1− (L+ 1) tanh2(λ))

2
, (27)

k >
2α log p

tanh2(λ)(1− (L+ 1) tanh2(λ))2
, (28)

then the pruning step ensures that V̂s = Vs. In this context, we add the following lemma.

Lemma 3. In the correlation decay regime of λ = Θ(1/L), with k = O(α log p
λ2 ) samples, our pruning step localizes

Vs exactly with probability at least (1− 2p2−α).

B.2 Joint Learning of Sparse GLMs

Now that we have localized Vs vertices, we will show that the joint learning method will lead to the result in
Theorem 1. We start by noting that the Sparsitron algorithm proposed in (Klivans and Meka, 2017) for learning
a sparse generalized linear model (GLM) was shown to enable structure learning of a single Ising model due to
certain properties of the random variables associated with a degree bounded Ising model. Here, we will build
upon the principles adopted in (Klivans and Meka, 2017) to first propose Algorithm 2 to joint learning of two
sparse GLMs and characterize its performance. Then we will leverage the performance of Algorithm 2 and the
properties of Ising models to complete the proof of Theorem 1.

Algorithm 2 Learning two GLMs jointly

1: Input β, γ, T pairs of data samples
2: initialize w0

i = 1a/a for i ∈ {1, 2}
3: for a new pair of data sample k ∈ {1, . . . , T} do

4: Compute hki =
wk−1
i

‖wk−1
i ‖1

5: Compute losses `ki (t) = 1
2 (1p + (σ(ωhki ·X(k))− Y (k)))X(k) for i ∈ {1, 2}

6: for t ∈ {1, . . . , a} do
7: if ζγk (ωhk1(t), ωhk2(t)) = 1 for k samples then

8: Update the weights wki (t) = wk−1i (t) exp(β(`k1(t) + `k2(t))/2) for i ∈ {1, 2}
9: else

10: Update the weights wki (t) = wk−1i (t) exp(β`ki (t)) for i ∈ {1, 2}
11: end if
12: end for
13: end for

Define g1 and g2 as two pdfs defined in [−1, 1]a × {0, 1}. Denote (Ci, Di) as a random sample from gi, i.e.,
(Ci, Di) ∼ gi, where Ci ∈ [−1, 1]a and Di ∈ {0, 1}. Also, we denote a collection of k independent and identically
distributed (i.i.d.) samples from gi by (Ck

i ,D
k
i ). We assume that Ci and Di satisfy the property

E[Di|Ci] = σ(ri · Ci) , for i ∈ {1, 2} , (29)

where σ : R → [0, 1] is a non-decreasing 1-Lipschitz function, and ri , [r1i , . . . , r
a
i ] is a vector of weights, such

that, ‖ri‖1 ≤ ω for i ∈ {1, 2} for some ω > 0. Let ζγk (j) be a decision rule that using k data samples from g1
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and g2 generates the output

ζγk (j) =

{
1, if rj1 = rj2
0, otherwise

, (30)

for j ∈ {1, . . . , a} and the output is correct with a probability larger than 1− γ, for some γ > 0. We also define
ζγk(j) as a vector consisting of decisions made on upto k data samples and is given by

ζγk(j) , [ζγ1 (j), . . . , ζγk (j)] . (31)

In this scenario, we propose Algorithm 2 to jointly learn r1 and r2 which builds upon the principles of Hedge
algorithm in (Freund and Schapire, 1997). Theorem 2 provides the sample complexity of Algorithm 2.

Theorem 2. Given T = O(ω2(log(a/δε)/ε2) number of i.i.d. samples from g1 and g2, Algorithm 2 forms
estimates r̂1 and r̂2, such that, with probability at least 1− δ, we have

Eg1,g2 [(σ(r̂i · Ci)− σ(ri · Ci))2] ≤ ε , for i ∈ {1, 2}. (32)

Proof. Note that in Algorithm 2, given a set of k samples and a decision vector ζγk(j), the weight wki (j) for the
j-th index in wki is given by

wki (j) = w0
i (j)

k∏
t=1

exp(βLti(j)) , (33)

where

Lti(j) , 1{ζγt (j)}
(`t1(j) + `t2(j))

2
+ (1− 1{ζγt (j)})`

t
i(j) , (34)

and 1{·} is an indicator function. First, we present a result similar to (Freund and Schapire, 1997, Theorem 5),
which establishes that the overall regret of an online learning framework given by Algorithm 2 is upper bounded
by the regret of the best expert with addition of terms that scale as O(

√
T log a)+log a. This result is formalized

in the next lemma.

Lemma 4. Given T data samples and a sequence of decision vectors ζγk, the overall regret corresponding to
learning the GLM for gi in Algorithm 2 is bounded as

T∑
k=1

hki · Lki ≤ min
t∈{1,...,a}

T∑
k=1

Lki (t) +O(
√
T log a) + log a , (35)

where

Lki , [Lki (1), . . . , Lki (a)]T and hki , [hki (1), . . . , hki (a)] , (36)

such that ‖hki ‖1 = 1 and hki (t) ≥ 0,∀t ∈ {1, . . . , a}.

Proof. Given an instance of decision sequences ζγk and the corresponding weights wki , we note that

a∑
t=1

wki (t) =

a∑
t=1

wk−1i (t) exp(βLki (t)) . (37)

Since we have Lki (t) ∈ [0, 1], and from the convexity argument in (Freund and Schapire, 1997), we get

exp(βLki (t)) ≤ 1− (1− exp(β))Lki (t) . (38)

Therefore, it readily follows that

a∑
t=1

wki (t) ≤
a∑
t=1

wk−1i (t)(1− (1− exp(β))hki · Lki ) . (39)
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For k = T and by repeating the steps (37) and (39), we have

a∑
t=1

wTi (t) ≤
a∑
t=1

w0
i (t)

T∏
k=1

(1− (1− exp(β))hki · Lki ) . (40)

By using
a∑
t=1

w0
i (t) = 1 and the property 1 + x ≤ exp(x),∀x, we get

a∑
t=1

wTi (t) ≤ exp(−(1− exp(β))

T∑
k=1

hki · Lki ) . (41)

The overall regret of the Algorithm 2 is given by
T∑
k=1

hki · Lki and from (41), we have

T∑
k=1

hki · Lki ≤
− log(

a∑
t=1

wTi (t))

1− exp(β)
. (42)

Therefore, we have established that any sequence of the loss functions for joint learning of the two GLMs satisfy
the same property as the loss function for learning a single GLM in (Klivans and Meka, 2017). Subsequent
arguments in Lemma 4 and Lemma 5 in (Freund and Schapire, 1997) complete the proof.

We will leverage Lemma 4 to characterize T for prediction of ri next. Corresponding to gi, we define the random
variable

V ki , (hki − ri/ω) · Lki , (43)

such that, V ki ∈ [−1, 1]. Based on V ki , we define another sequence of random variables

Zki = V ki − E[V ki |(Ck−1
1 ,Dk−1

1 ), (Ck−1
2 ,Dk−1

2 )] . (44)

Then, we have Zki ∈ [−2, 2]. Note that using Azuma’s inequality on martingales with bounded differences, we
find that the following event holds with probability at least 1− δ,

T∑
k=1

E[V ki |((Ck−1
1 ,Dk−1

1 ), (Ck−1
2 ,Dk−1

2 )] ≤
T∑
k=1

V ki +O(T log(1/δ) . (45)

Furthermore, note that

E[V ki |((Ck−1
1 ,Dk−1

1 ), (Ck−1
2 ,Dk−1

2 )] =
1

ω
E[ωhki − ri) · Lki ] , (46)

and

E[V ki | ≥
1

4ω
E[σ(ωhki · Ci)− σ(ri · Ci))2] , (47)

where (47) follows from the inequality that ∀a, b ∈ R, (a − b)(σ(a) − σ(b)) ≥ (σ(a) − σ(b))2 and that the lower
bound corresponds to correct decisions ζγk (t) = 1 for all t ∈ {1, . . . , a}, irrespective of the confidence γ. Then, it
follows from (36), (45), and (47) that with probability at least 1− δ, we have

1

4ω

T∑
k=1

E[σ(ωhki · Ci)− σ(ri · Ci))2]

≤ min
t∈{1,...,a}

T∑
k=1

Lki (t)−
T∑
k=1

(ri/ω) · Lki +O(
√
T log a) + log a+O(T log(1/δ)) . (48)
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Clearly, when ‖ri‖1 = ω, we have that

min
t∈{1,...,a}

T∑
k=1

Lki (t)−
T∑
k=1

(ri/ω) · Lki ≤ 0 . (49)

When we have ‖ri‖1 < ω, we can augment ri with a pseudo vector r̃i, s.t., ‖[ri, r̃i]‖1 = ω and the random vector
Ci with an additional element that corresponds to 0 such that r̃i corresponds to the weight associated with 0
and proceed further. This also motivates the inclusion of auxiliary weights κ̃uvi in Algorithm 1. Next, we note
that with probability at least 1− δ, we have

1

4ω

T∑
k=1

E[σ(ωhki · Ci)− σ(ri · Ci))2] = O(
√
T log a) +O(log a) +O(T log(1/δ) . (50)

Therefore, for T = O(ω2 log(a/δ)/ε2, we must have that with probability at least 1− δ,

min
k∈{1,...,T}

E[σ(ωhki · Ci)− σ(ri · Ci))2] ≤ ε . (51)

B.3 Learning Ising Models Jointly

To complete the proof of Theorem 1, we note that if V̂s is an MRF, we have

E[Bui ] =
1

1 + exp(2λ
∑

{v:(u,v)∈Esi }
Xu
i X

v
i )

. (52)

Therefore, every vertex u ∈ V̂s can determine its neighborhood in G1 and G2 using Algorithm 2 by setting σ to
be a sigmoid function, ω = λd, Di = Bui in Gi, and a = |V̂s| − 1. In this scenario, we have the following lemma
in the context of Ising models that is equivalent to Theorem 2.

Lemma 5. For a u vertex in an Ising model spanned by V̂s, given nT = O
(
λ2d2

ε2 log |V̂s|
ρε

)
number of pairs

of samples from V̂s vertices in G1 and G2, Stage 2 of Algorithm 1 produces at least one edge structure Eki for
k ∈ {1, . . . , nT}, such that, with probability at least 1− ρ

|V̂s|2
,

E

σ
−2

∑
{v:(u,v)∈Eki }

λXv
i

− σ
−2

∑
{v:(u,v)∈Es

i}

λXv
i

 ≤ ε , ∀ε > 0. (53)

Recalling that we can localize all the q vertices of Vs exactly with O( log p
λ2 ) samples, the statement of the Theorem 1

follows from Lemma 5, (Bresler, 2015, Lemma 2.1) for degree bounded Ising models and (Klivans and Meka,
2017, Lemma 4.3).

By combining Lemma 3 and Lemma 5, we complete the proof of Theorem 1.

Remark 2. We conjecture that the above analysis provided us with an upper bound on the number of samples
sufficient for learning Gs as we ignore the impact of multiplicative weight updates made for joint structure learning
till the iteration when pruning has localized Vs successfully. However, in practice, for graphs without the strong
assumption on structure for Vs, we observe that for the same number of samples, our algorithm performs substan-
tially better than learning the two graphs individually even under the correlation decay regime (refer to Fig. 4,
where the structure learning algorithms leverage same pairwise statistics as our pruning subroutine), indicating
that the joint structure learning subroutine converges towards learning the true structure of Gs simultaneously as
the pruning subroutine enables the estimate V̂s to converge to Vs.
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C Necessary Conditions for Recovering (Vs, Es)

In this section, we briefly comment on the necessary conditions for recovering the subgraph (Vs, Es) under perfect
pruning. We note that in general, the joint pdf of X1 and X2 denoted by f(X1,X2) is given by

f(X1,X2) =
1

Z12
exp

 ∑
(u,v)∈Es

λ(Xu
1X

v
1 +Xu

2X
v
2 ) +

∑
(u,v)∈Ẽ1

λXu
1X

v
1 +

∑
(u,v)∈Ẽ2

λXu
2X

v
2

 , (54)

where Z12 is the partition function that ensures f(X1,X2) is a valid pmf, and we have defined Ẽ1 , E1\Es

and Ẽ2 , E2\Es. The class of graphs associated with Gs is given by by Isp and formally defined in Definition 1.
Following in the main paper, we have defined Isp(Gs) ⊆ Ip × Ip as the class of all possible pairs of Ising models
whose shared structure is given by Gs, and denoted the set of random variables associated with Vs in Gi by Xs

i

and those with V \Vs by Xc
i . Accordingly, the marginal joint pmf of the random variables Xs

i is given by

f̃(Xs
1,X

s
2) , 1

|Isp(Gs)|
exp

 ∑
(u,v)∈Es

λ(Xu
1X

v
1 +Xu

2X
v
2 )


×

 ∑
Xc

1,X
c
2

∑
(Ẽ1,Ẽ2)∈Isp(Gs)

1

ZẼ1,Ẽ2

× exp

 ∑
(u,v)∈Ẽ1

λXu
1X

v
1 +

∑
(u,v)∈Ẽ2

λXu
2X

v
2 )


 , (55)

where ZẼ1,Ẽ2
is a partition function associated with pdf of the pair of Ising models with edge structures Ẽ1 and

Ẽ2 unique to G1 and G2, respectively. Clearly, finding a closed-form for f̃(Xs
1,X

s
2) is intractable in general and

performing marginal inference on Ising models is an open research problem with many approximation methods.

However, in certain scenarios, the pdf f̃ conforms to MRF properties. For instance, if (Vs, Es) forms a tree
structure in graphs with L = 1 or an isolated subgraph in graphs with arbitrary L, f̃(Xs

1,X
s
2) is given by

f̃(Xs
1,X

s
2) =

1

Ẑ12

exp

 ∑
(u,v)∈Es

λ(Xu
1X

v
1 +Xu

2X
v
2 )

 . (56)

We remark that while (56) captures the connectivity of (Vs, Es) for general Ising models, it ignores any long range
correlations existing between the random variables Xu

i and Xv
i due to the existence of multiple paths between u

and v vertices in graph Gi.
For completeness, we list the conditions on the number of samples required in the structure learning stage of
our framework under perfect pruning and when subgraphs spanned by Vs form an MRF in both graphs. Note
that the scenario with perfect pruning is sufficient to compare our results on the average sample complexity of
our algorithmic framework since we can isolate Vs correctly with high probability in correlation decay regime.
The following theorem provides the necessary condition on the number of samples for recovering shared graph
structure (Vs, Es) in the context of tree-structured graphs.

Theorem 3. When G1 and G2 belong to a family of tree structured Ising models and the shared structure Es

forms a tree, any graph decoder that achieves P(Isp) ≤ 1/2 must have nL = Ω
(

eλ

λ tanhλ log q
)

number of samples

from Vs vertices.

Furthermore, for an isolated subgraph (Vs, Es), the necessary conditions based on the results in (Sihag and Tajer,
2019b) for jointly recovering Es are provided in Theorem 1.

Theorem 4. For a pair of graphs G1 and G2 in the family of Ising models with an isolated subgraph (Vs, Es),
any graph decoder that achieves P(Isp) ≤ δ − 1

log q must have

nL ≥ max

{
log q

λ tanhλ
,

exp(λd)

λd exp(λ)
log qd

}
, (57)

number of samples from Vs vertices.
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D Additional Experiments

Joint versus independent learning of structurally similar graphs. In this section, we illustrate the
gains in sample complexity per graph by jointly learning the structures of two graphs using Algorithm 3 that
uses the multiplicative weight updates corresponding to the means of the loss functions in (14) as opposed to
learning them independently using the algorithm in (Klivans and Meka, 2017) using (16). The difference from
the experiments given in the main paper is that, here we aim to learn the complete structures of the two graphs,
and assume Vs is known. For this purpose, we run our experiments on Ensemble 3 in Fig. 3 which has maximum
degree 3. The structural similarity between the two models is quantified by a parameter µ ∈ (0, 1] in a fashion
similar to that defined in (Sihag and Tajer, 2019a, Definition 1). In this setting, Algorithm 1 without pruning
step and known Vs is equivalent to Algorithm 3.

Algorithm 3 Joint structure learning algorithm for recovering E1, E2 when structural similarity is known (Sihag
and Tajer, 2019a)

1: Input Vs, n = T +M pairs of data samples, β = log
(

1/(1 +
√

log p/T )
)

2: Initialize κuvi (1) = 1/(p− 1), κ̃uvi (1) = 1/(p− 1) and wuvi (1) = 0 for all u 6= v ∈ V and i ∈ {1, 2}
3: for a new pair of data sample k ∈ {1, . . . , T} do
4: For each u ∈ V , compute bui (k) =

∑
v 6=u,v∈V

wuvi (k)Xv
i (k)

5: for each pair u, v ∈ V , u 6= v do
6: Compute losses `uvi (k)
7: if u ∈ Vs, v ∈ Vs then
8: Update the weights κuvi according to (14) and κ̃uvi (k + 1) = κ̃uvi (k) exp(β/2) for i ∈ {1, 2}
9: else

10: Update the weights κuvi according to (16) and κ̃uvi (k + 1) = κ̃uvi (k) exp(β/2) for i ∈ {1, 2}
11: end if
12: end for
13: for each pair u 6= v do
14: Compute normalized weights wuvi (k + 1) according to (21)
15: end for
16: Compute estimates Gk1 and Gk2 such that for every pair u 6= v in Gki , an edge exists if wuvi ≥ λ/2
17: Compute empirical risks εki
18: end for
19: return Graphs Gti : t = argmink ε

k
i

Figure 8 illustrates the comparison of the mean performance of Algorithm 3 for recovering graph pairs with
different structural similarity against recovering them independently using the algorithm in (Klivans and Meka,
2017) over 1000 random instances of graph pairs. The probability of error counts the fraction of the instances at
which the true graph pair was not recovered exactly in any of the iterations when the online learning algorithm
was run up to a horizon indicated on the horizontal axis.

Clearly, our algorithm outperforms the independent structure learning algorithm for µ = 0.25, 0.5 and 1. When
µ = 1, the graph pairs are identical and therefore, Algorithm 1 is equivalent to processing the data Xn

1 and Xn
2

in parallel with 2 processing units that process one graph sample each in every iteration with an exchange of
pairwise loss functions between the two. This indicates that Algorithm 1 outperforms by processing 2 graph
samples in every iteration up to a horizon T as compared to an approach that sequentially processes 1 graph
sample up to a horizon T .
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Figure 8: Error probability versus horizon (T ) or the number of samples for each graph.

Our algorithm vs. naive joint learning benchmark. A different baseline from the ones presented in the
main paper can be the joint learning of two graphs in their entirety, without aiming to learn only the shared
structure. We can achieve this baseline by removing pruning part of our algorithm, i.e., simply replacing Step.
18 of 1 with individual weight updates. Figure 9 illustrates that our algorithm requires significantly less number
of samples per vertex on both random and tree structured graph pairs.
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Figure 9: Error probability versus sample complexity

The effect of pruning errors. We remark that if the pruning stage output significantly deviates from the
correct Es, our algorithm still has the room to make the correct decisions as the structure learning algorithm
runs independently of the pruning step for at least k > α log p/ tanh2 λ number of iterations, during which the
weights for all pairwise combinations in the graph are learnt. Therefore, if pruning step makes significantly
wrong decisions and terminates updating the weights for certain edges in Es, we expect the degradation in
performance to be controlled. We tested this on Erdős-Rényi random graph pairs that have 12 shared edges, and
we intentionally stopped updates for 3 of those edges in V̂sk. We observe in Fig. 10 that, there is approximately
10% increase in sample complexity of recovering the shared graph correctly, indicating that the algorithm was
robust.
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Figure 10: Effect of forced pruning errors

The effect of subgraph size. Size of the subgraph q appears in the sample complexity (20), which indicates
that for a fixed target performance, doubling q increases the sample complexity by 1

λ2 exp(λd). Figure 11
illustrates the effect of increasing graph size for Erdős-Rényi random graphs with 200 vertices.
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Figure 11: Error probability versus sample complexity

Application to voting records. We have tested our algorithm on senate voting data of 109-th congress
(2005-2006 period) (Lewis et al., 2020) which has been previously analyzed in (Guo et al., 2015). There are 44
Democrats, 55 Republicans and 1 independent senator at this term. Each senator was linked to a vertex in the
Ising model, and their ‘Yes’ vote was associated with the state +1 and the ‘No’ vote was associated with the state
−1. Due to the bipartisanship in the U.S. Senate, the voting behavior of any senator was likely to be correlated
with that of other senators with a similar political affiliation. We aimed to learn the shared structure between
the graphs Gpass and Greject, where the edge structures of Gpass and Greject represented correlations among the
voting behaviors of different senators in the ”Passed” and ”Rejected” bills, respectively.

Figure 12a illustrates the shared structure between Gpass and Greject obtained using our framework. Figure 12b
and 12c illustrate the individual structures of Gpass and Greject learnt using the algorithm in (Klivans and Meka,
2017). The comparison of the shared structure in Fig. 12a to that of the graphs in Fig. 12b and Fig. 12c reveals
that a significant number of edges linking different senators exist in only one graph.
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(a) Shared Gpass and Greject
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(b) Structure of Gpass
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(c) Structure of Greject

Figure 12: Learned Structure of Senators of 109th Congress. Blue, Red, and Green vertices represent Democrat,
Republican, and Independent senators respectively.


