
Published in Transactions on Machine Learning Research (01/2024)

Separability Analysis for Causal Discovery in
Mixture of DAGs

Burak Varıcı varicb@rpi.edu
Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Dmitriy Katz-Rogozhnikov dkatzrog@us.ibm.com
IBM Research AI

Dennis Wei dwei@us.ibm.com
IBM Research AI

Prasanna Sattigeri psattig@us.ibm.com
IBM Research AI

Ali Tajer tajer@ecse.rpi.edu
Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Reviewed on OpenReview: https://openreview.net/forum?id=ALRWXT1RLZ

Abstract

Directed acyclic graphs (DAGs) are effective for compactly representing causal systems and specify-
ing the causal relationships among the system’s constituents. Specifying such causal relationships in
some systems requires a mixture of multiple DAGs – a single DAG is insufficient. Some examples
include time-varying causal systems or aggregated subgroups of a population. Recovering the causal
structure of the systems represented by single DAGs is investigated extensively, but it remains mainly
open for the systems represented by a mixture of DAGs. A major difference between single- versus
mixture-DAG recovery is the existence of node pairs that are separable in the individual DAGs but
become inseparable in their mixture. This paper provides the theoretical foundations for analyzing
such inseparable node pairs. Specifically, the notion of emergent edges is introduced to represent
such inseparable pairs that do not exist in the single DAGs but emerge in their mixtures. Necessary
conditions for identifying the emergent edges are established. Operationally, these conditions serve
as sufficient conditions for separating a pair of nodes in the mixture of DAGs. These results are
further extended, and matching necessary and sufficient conditions for identifying the emergent edges
in tree-structured DAGs are established. Finally, a novel graphical representation is formalized to
specify these conditions, and an algorithm is provided for inferring the learnable causal relations.

1 Introduction

1.1 Motivation

Causal Bayesian networks can effectively represent causal relationships among random variables generated in a network
of interacting agents. Such a network can be specified by, for instance, a directed acyclic graph (DAG) and a joint
probability distribution that factorizes with respect to the DAG. Causal discovery is the process of using observational
data and inferring a DAG’s causal structure, i.e., its edges’ locations and orientations. One common approach to causal
discovery involves performing statistical tests for determining conditional independence relationships in the observation
data. When the system can be represented by a DAG, the inferred independence relationships are subsequently converted

1

mailto:varicb@rpi.edu
mailto:dkatzrog@us.ibm.com
mailto:dwei@us.ibm.com
mailto:psattig@us.ibm.com
mailto:tajer@ecse.rpi.edu
https://openreview.net/forum?id=ALRWXT1RLZ

Published in Transactions on Machine Learning Research (01/2024)

into DAG (d-separation) separation statements to infer the structure (Spirtes et al., 2000; Colombo et al., 2012). These
approaches are known as constraint-based methods. Other notable approaches include score-based methods (Chickering,
2002; Tsamardinos et al., 2006), hybrid methods (Nandy et al., 2018), and continuous-optimization-based methods
(Zheng et al., 2018).

A widely used assumption in causal discovery is that the observed data is independent and identically distributed (i.i.d.)
according to one DAG. This is not valid in a wide range of settings and applications in which more complex mechanisms
generate the observed data. Such complex data can be modeled more accurately by multiple distinct causal models on
the same set of variables. For instance, in fMRI data analysis, different brain regions interact differently under various
activities of the subjects (Neumann et al., 2010). Another example is gene expression data from certain diseases, like
ovarian cancer, which comprises multiple subtypes that are challenging to distinguish (Reid et al., 2017). In a successful
gene-editing technique CRISPR-Cas9 (Ran et al., 2013), Cas9 enzyme cuts the DNA at a specific location. However,
depending on an array of factors, such as the delivery method of the gene-editing tool and the complexity of the genetic
alteration needed, the gene-editing tool is not always successful, resulting in ambiguity while grouping gene expression
samples based on the corresponding distribution. In psychological studies, often multiple time-series trajectories (e.g.,
depression-related symptoms over a period of time) are collected from different patients (Bulteel et al., 2016). This
data is fitted better with multi-modal linear dynamic systems instead of a single model, and labels of the trajectories –
model membership of the samples – are unknown to the researcher. For more examples of mixture models in dynamical
systems, we refer to Chen & Poor (2022). Furthermore, in some settings, the causal models are cyclic. For instance, the
processes that regulate hormones without reaching an equilibrium state (Pirahanchi et al., 2023). The statistical models
of the data in such heterogeneous systems cannot be represented with a single DAG and require a mixture of them.

1.2 Contribution

Despite the significance of causal discovery from complex models, it is far less investigated compared to causal discovery
in single DAGs. The advances in the discovery of single DAGs are due to well-specified frameworks that facilitate
formalizing various causal discovery objectives and are amenable to tractable analysis. However, the counterparts of
such frameworks for more complex models are not well-established in the literature. This paper formalizes a framework
that facilitates addressing causal discovery objectives in systems represented by a mixture of DAGs. The first important
step towards this goal is establishing possibility results, that is, identifying and discerning the causal relationships that
can possibly be learned from those that are impossible to learn. It can be readily verified that some natural choices
generally investigated in single DAGs are impossible when working with mixture models. For instance, mixing the
models renders learning the constituent DAGs’ structures impossible. Similarly, recovering the union of the edges of
individual DAGs is ill-posed without additional information or assumptions on the causal models. To address such
learnable versus unlearnable dichotomy to develop the key ideas, we consider a mixture of two DAGs.

We formalize the separability framework in which the inferential decisions are centered around separability analysis,
which refers to identifying the pair of random variables that cannot be made conditionally independent in the mixture
distribution. Accordingly, we refer to the node pairs associated with inseparable random variables as inseparable pairs.
We introduce proper edge notations to visualize such edges graphically. Given this framework, we investigate what can
be learned about the underlying DAGs in a mixture model. We adopt a constraint-based approach and use conditional
independence (CI) tests on the mixture distribution to identify inseparable node pairs. We note that faithfulness –
conditional independencies in the data being due to the separations in the true DAG – is a core assumption in constraint-
based causal discovery (Spirtes et al., 2000; Pearl, 2009). Hence, we adopt a mixture faithfulness assumption in this
paper, similar to the existing literature on causal discovery in a mixture of DAGs. Once the inseparable node pairs
are identified, we construct a mixture graph with these node pairs as its edges. The main challenge in interpreting
the mixture graph is the existence of node pairs that are not adjacent (connected) in all individual DAGs but are not
conditionally independent in the mixture distribution for any conditioning set. Due to their importance, we analyze
this subset of inseparable pairs and refer to them as emergent edges. We observe that the set of nodes with varying
conditional distributions across the individual DAGs, denoted by ∆, plays a critical role in forming inseparable pairs
in the mixture. We start by investigating a mixture of two arbitrary DAGs and establish conditions under which any
arbitrary pair of nodes in the mixture model is separable. Equivalently, for a node pair to form an emergent edge, these

2

Published in Transactions on Machine Learning Research (01/2024)

conditions necessarily do not hold. Furthermore, we specialize these results to tree-structured1 DAGs, for which we
establish the necessary and sufficient conditions for node pairs to be separable. Our main contributions are as follows.

• We introduce a mixture graph to represent the inseparable pairs of nodes in the mixture distribution. To
interpret the edges of the mixture graph, we present a sufficient condition for two nodes to be separable. This
result sheds light on the inadequacy of an existing graphical representation in the literature.

• We strengthen the results for a mixture of tree-structured DAGs and establish necessary and sufficient conditions
for two nodes to form an emergent edge in the mixture.

• We introduce new edge notations for inseparable node pairs to represent the above conditions and partially
orient the skeleton of the mixture graph. We discuss the inference of these oriented edges from unshielded
triples and show that v-structures upon nodes in the ∆ set can be recovered. Finally, we devise an algorithm
built on our theoretical results to recover the learnable causal relationships.

1.3 Related Work

Causal discovery of a mixture of DAGs. There are three studies closely related to this paper. The shared objective
of these papers is to develop a graphical model to represent as many CI relationships in the mixture distribution as
possible. Spirtes (1995) proposes a fused graph and shows that the mixture distribution is with respect to the fused
graph. However, it does not provide separability theorems for a pair of nodes. Strobl (2023) proposes a mixture graph
such that the mixture distribution is Markov with respect to the proposed graph. However, this study does not provide
counterparts of our separability results either. It proposes an algorithm that is designed exclusively for time-series
data. In the work most closely related to this paper, the study by Saeed et al. (2020) considers a mixture of DAGs and
proposes a composite DAG that satisfies the Markov property. Subsequently, it represents the mixture distribution with
a maximal ancestral graph (MAG) to use the existing structure learning algorithms directly. This approach is only
valid under a strict assumption called poset compatibility that rules out any conflicting ancestral relationships across
individual DAGs (e.g. cycles). Importantly, none of these studies provide conditions for when an emergent edge arises.
In this paper, we mainly focus on tree-structured component DAGs, but we do not restrict the topological order of the
individual DAGs and do not consider time-series data.

Causal discovery from multiple clusters/contexts. Another approach to our problem is to divide it into two independent
stages: clustering the samples and then performing structure learning on each cluster individually (Zhang & Glymour,
2020; Chen et al., 2021). Learning from multiple contexts is a well-studied topic in the causality literature, especially in
interventional (experimental) settings (Huang et al., 2020; Zhang et al., 2017; Mooij et al., 2020; Jaber et al., 2020). In
these studies, the context of an observed sample, i.e., which graph it belongs to, is assumed to be known in contrast to
observing a mixture distribution. In another line of work, several algorithms perform causal discovery of cyclic causal
models by assuming that the observed distribution is the equilibrium state of multiple involved causal models (Forré &
Mooij, 2017; Bongers et al., 2021; Améndola et al., 2020; Ghassami et al., 2020). The study in Winn (2012) addresses
the problem of representing context-specific independence via leveraging factor graphs with interventions. This is an
interesting yet underexplored approach compared to the graphical modeling of interventions based on (Pearl, 2009).
The study in Thiesson et al. (1998) aims to learn the parameters of multiple Bayesian networks from combined data.
Specifically, heuristic score-based algorithms are proposed for jointly learning the structure and parameters of multiple
Bayesian networks. Finally, Meila & Jordan (2000) consider learning a discrete mixture-of-trees distribution. However,
the considered model is not causal.

Applications of tree-structured DAGs. Causal trees are shown to be computationally effective while still being
useful to closely approximate more complex models (Acid & de Campos, 1994). Beyond their convenience for
providing tractable analysis, they are widely studied in causal discovery literature and have real applications, e.g., in
biological networks. Specifically, protein signaling pathways are commonly modeled by causal trees. For instance,
bi-partite causal graphs are used to model gene networks, in which genes induce protein expressions, and the expressed
proteins either inhibit or activate other genes (Kontou et al., 2016). NF-kB protein signaling pathway, which activates
mammalian immune system cells to produce antibodies against inflammation, is also modeled by causal trees (Lodish,
2016).

1Specifically, a tree-structured DAG is a DAG whose underlying undirected graph is a tree. This structure can be referred to as directed tree,
polytree or singly connected network as well.

3

Published in Transactions on Machine Learning Research (01/2024)

2 Separability Framework for DAG Mixtures

DAG Models. In this section, we provide a DAG mixture model and introduce the notations needed for analyzing them.
For clarity purposes, we initially focus on a mixture of two DAGs and discuss the generalization to a mixture of an
arbitrary number of DAGs in Appendix B.

Consider two component DAGs G1 ≜ (V, E1) and G2 ≜ (V, E2) defined over the same set of nodes V ≜ {1, . . . , n}.
Eℓ denotes the set of directed edges in graph Gℓ, for ℓ ∈ {1, 2}. We define paℓ(i), chℓ(i), anℓ(i), deℓ(i), and spℓ(i)
to denote parents, children, ancestors, descendants, and spouses (i.e., nodes that share a common child) of node i in
graph Gℓ for ℓ ∈ {1, 2}, respectively. We denote the maximum in-degree of a node in either component DAG by d. We
augment the set paℓ(i) by adding the node i to it and denote the augmented set by pa+

ℓ (i) ≜ paℓ(i) ∪ {i}. Similarly,
we also define the augmented sets ch+

ℓ (i), de+
ℓ (i), and an+

ℓ (i). We extend these notations to any desired subset of
nodes. Specifically, for any A ⊆ V we define

paℓ(A) ≜
⋃
i∈A

paℓ(i) , (1)

and define chℓ(A), anℓ(A), deℓ(A), and spℓ(A) similarly.

Probability Models. The random variable associated with node i ∈ V is denoted by Xi, which can be continuous or
discrete. Accordingly, we define the vector of variables X ≜ (X1, . . . , Xn)⊤. For any subset of nodes A ⊆ X , we
define XA ≜ {Xi : i ∈ A}. We denote the probability distributions of X under G1 and G2 by p1 and p2, respectively.
These distributions factorize with respect to their associated DAGs according to

pℓ(x) =
∏

i∈[n]

pℓ(xi | xpaℓ(i)) , ∀ℓ ∈ {1, 2} . (2)

This factorization implies that p1 and p2 can be distinct even when E1 and E2 are identical. Hence, the differences
between the two causal models should be defined through the nodes with varying causal mechanisms, i.e., conditional
distributions. We denote the set of nodes that have distinct conditional distributions across two models by ∆, i.e.,

∆ ≜ {i ∈ V : p1(Xi | Xpa1(i)) ̸= p2(Xi | Xpa2(i))} . (3)

Observations Mixture Model. The observed data is generated by a mixture of distributions p1 and p2. The model
generating the observation at a given instance is unknown. To formalize this, we define L ∈ {1, 2} as a latent random
variable that accounts for the true model underlying the observed data, where L = ℓ specifies that the true model is pℓ.
We denote the probability mass function (pmf) of L by q. We assume that L and X are statistically independent. These
render the following mixture distribution for the observed samples X .

pM(x) ≜
∑

ℓ∈{1,2}

q(ℓ) · pℓ(x) . (4)

Next, we introduce the notations and definitions for formalizing the separability framework, formulating the causal
discovery objectives, and describing the analytical results. Connectivities between node pairs, represented by edges, in
a graphical representation of causal models are collectively denoted by the skeleton of the graph. An edge between two
nodes essentially means that the random variables associated with the nodes cannot be made conditionally independent.
Such nodes are equivalently (under faithfulness) referred to as inseparable nodes. The exact meaning and orientation of
the edges can change across different representations, e.g., directed edges in DAGs and bidirected edges in MAGs, but
the inseparability requirement remains the same.

The existing literature on studying a mixture of DAGs focuses on establishing a graphical representation that can
(partially) represent conditional independence relations in the mixture distribution pM (Spirtes, 1995; Saeed et al., 2020;
Strobl, 2023). While effective for inferring the separability statements, the existing approaches do not represent some of
the important aspects of the mixture models such as interpreting the cycles across the individual DAGs. We specify four
directed and undirected graphical models, each serving a distinct purpose in the analysis. In these graphs, we use the
following edge notations:

4

Published in Transactions on Machine Learning Research (01/2024)

• (i− j): the undirected edge from node i to node j.
• i→ j: the directed edge from node i to node j.
• i

ℓ→ j: the directed edge from node i to node j in Eℓ.
• i

ℓ
⇝ j: denotes i ∈ anℓ(j).

We call the tuple of nodes (i, k, j) an unshielded triple in Gℓ if (i− k) and (j − k) are edges of Gℓ but i and j are not
adjacent. If we further have i

ℓ→ k
ℓ← j, node k is called a unshielded collider in Gℓ and (i ℓ→ k

ℓ← j) is called a
v-structure. We introduce an auxiliary node denoted by y, representing the latent variable L of the mixture model.

Definition 1 (Union Graph) The union graph, denoted by GU ≜ (V, EU), is an undirected graph constructed by
setting EU as the union of all edges in G1 and G2 after removing their orientations, i.e.,

EU ≜ {(i− j) : i, j ∈ V , ∃ℓ ∈ {1, 2} : i
ℓ→ j} . (5)

By recalling the definition of ∆ in (3), next we define fused graphs.

Definition 2 (Fused Graph (Spirtes, 1995)) The fused graph GF ≜ (VF, EF) is a directed graph constructed by
setting VF ≜ V ∪ {y}, superposing the edge sets E1 and E2, and adding edges from y to the nodes in ∆, i.e.,

EF ≜ {i→ j : i, j ∈ V, ∃ℓ ∈ {1, 2} : i
ℓ→ j} ∪ {y → i : i ∈ ∆} . (6)

A fused graph can contain cycles but does not necessarily encode the complete set of conditional independencies
in mixture distribution. Next, we specify a composite DAG2, defined by Saeed et al. (2020). The composite DAG
involves concatenating G1 and G2 with a single-node graph Gy ≜ ({y}, ∅) between them. Figure 1 shows an example of
constructing a composite DAG from component DAGs. The composite DAG is formalized next.

Definition 3 (Composite DAG (Saeed et al., 2020, Definition 3.1)) Given graphs G1, G2, and Gy ≜ ({y}, ∅), the
composite DAG GC is constructed by a series composition of G1, Gy, and G2. The composite DAG GC inherits the
directed edges of G1 and G2 and additionally includes directed edges from node y to nodes ∆ in G1 and G2.

The composite DAG consists of 2n + 1 nodes. We refer to the node corresponding to node i in Gℓ by iℓ. Accordingly,
for any A ⊆ V we define Ā ≜ {iℓ : i ∈ A, ℓ ∈ {1, 2}}.

Definition 4 (Composite DAG d-separation) For any disjoint sets A, B, C ⊆ V, we say that given C, A and B are
d-separated in the mixture model when given C̄, Ā and B̄ are d-separated in GC . We denote such d-separation by
A ⊥⊥M B | C.

Definition 5 (Mixture Global Markov Property) We say that mixture distribution pM satisfies the global Markov
property with respect to GC if for any disjoint sets A, B, C ⊆ V such that A ⊥⊥M B | C, we have XA and XB are
conditionally independent given XC . This is denoted by XA ⊥⊥ XB | XC .

Definition 6 (Mixture Faithfulness) The converse of the Markov property between GC and pM is called mixture
faithfulness, that is pM is faithful to GC if XA ⊥⊥ XB | XC in pM implies A ⊥⊥M B | C.

Mixture faithfulness facilitates forming inferences on the graph structure from CI tests on distribution, and it is adopted
by constraint-based causal discovery literature. In this paper, we work under the mixture faithfulness assumption. While
the composite DAG is not the representation we are characterizing in this paper, it captures important conditional
independence relations among Xi and Xj , which facilitate our separability analysis. Next, we define mixture graphs,
distinct from the composite DAGs defined above. The purpose of the mixture graph is to represent the inseparable node
pairs compactly over nodes V. In Section 4 we will analyze the properties of mixture graphs.

Definition 7 (Mixture Graph) The mixture graph, denoted by GM ≜ (V, EM), is a graph over V with undirected
edges between the pair of nodes that are always dependent in the mixture distribution pM, i.e.,

EM ≜ {(i− j) : i, j ∈ V, ∄A ⊆ V \ {i, j} : Xi ⊥⊥ Xj | XA} . (7)
2Referred to as mixture DAG in (Saeed et al., 2020).

5

Published in Transactions on Machine Learning Research (01/2024)

<latexit sha1_base64="ct5o3ABHlfPJ6xo9i83RnbPkXQw=">AAACxHicjVHfSxtBEN6c1dpYf/axL0uDYEHCnYj1UdG2PpRiwaiQC2FuM5cs2ds7dmfFcKR/Rl9b+l/1v+leEkqT+ODAwsf3zXwzs5MUSloKwz+1YOXF6trL9Vf1jdebW9s7u3u3NndGYEvkKjf3CVhUUmOLJCm8LwxClii8S4YXlX73gMbKXN/QqMBOBn0tUymAPBXHGdAgScuP427U3WmEzXASfBlEM9Bgs7ju7tZ+x71cuAw1CQXWtqOwoE4JhqRQOK7HzmIBYgh9bHuoIUPbKSdDj/m+Z3o8zY1/mviE/b+ihMzaUZb4zGpIu6hV5FNa21F62imlLhyhFtNGqVOccl79AO9Jg4LUyAMQRvpZuRiAAUH+n+pzbSbmBYq5VcpHp6XIe7jAKnokA+P6fmyRMpC62qu8QvWAvgfwr+jwn+p9K/ngUvYl2cMv/hz68LNBHL5fKpnzOzcS1LNsppn+qtHiDZfB7VEzOmkefztunB3N7rvO3rJ37IBF7AM7Y1fsmrWYYAX7wX6yX8GnQAU2cNPUoDarecPmIvj+Fw4e4FU=</latexit>

E1
<latexit sha1_base64="Bq3VlfF6NhwJIGrMXDfhSr5W4SE=">AAACxHicjVFRSxtBEN5crbVpa7V97MtiECxIuAvS9tHS1vpQRMGokAthbjMXl+ztHbuzYjjiz/BV8V/133QvCWISHzqw8PF9M9/M7CSFkpbC8G8teLHycvXV2uv6m7fv1t9vbH44s7kzAtsiV7m5SMCikhrbJEnhRWEQskTheTL8UennV2iszPUpjQrsZjDQMpUCyFNxnAFdJmn5a9xr9TYaYTOcBF8G0Qw02CyOe5u1h7ifC5ehJqHA2k4UFtQtwZAUCsf12FksQAxhgB0PNWRou+Vk6DHf9kyfp7nxTxOfsE8rSsisHWWJz6yGtItaRT6ndRyl37ql1IUj1GLaKHWKU86rH+B9aVCQGnkAwkg/KxeXYECQ/6f6XJuJeYFibpXy2mkp8j4usIquycC4vh1bpAykrvYqD1Fdoe8B/AgdPqret5J3fsqBJLv7x59D7/42iMPPSyVzft+NBPVfNtNMf9Vo8YbL4KzVjL409072Gvut2X3X2Ce2xXZYxL6yfXbIjlmbCVawW3bH7oODQAU2cNPUoDar+cjmIrj5BxBz4FY=</latexit>

E2
<latexit sha1_base64="VCiS+8dGgFCynvk62PcbAI67owM=">AAAC2HicjVFRaxNBEN6cVmusmuqjIEtDoUIJd6FoH1uq2AeRFpq2NBfC3GYuXbK3d+zOhYQj0AdBfPUn+Oir/hn/jXtJKE3iQwcWPr5v5puZnShT0pLv/614Dx6uPXq8/qT6dOPZ8xe1zZfnNs2NwJZIVWouI7CopMYWSVJ4mRmEJFJ4EQ2OSv1iiMbKVJ/ROMNOAn0tYymAHNWtvQkToOsoLj5OugEPBWT8DtPs1up+w58GXwXBHNTZPE66m5WfYS8VeYKahAJr24GfUacAQ1IonFTD3GIGYgB9bDuoIUHbKaaLTPi2Y3o8To17mviUvVtRQGLtOIlcZjmkXdZK8n9aO6d4v1NIneWEWswaxbnilPLyV3hPGhSkxg6AMNLNysU1GBDk/q660GZqnqFYWKUY5VqKtIdLrKIRGZhUt0OLlIDU5V7FMaohuh7Av2COt6rzLeWdD7Ivye5+difSu58M4uDtSsmC36GRoO5lM8t0Vw2Wb7gKzpuN4F1j73SvftCc33edvWZbbIcF7D07YMfshLWYYF/ZL/ab/fGuvBvvm/d9lupV5jWv2EJ4P/4BzNvnpg==</latexit>

E1 \ E2
<latexit sha1_base64="iCjICzsQ8aC/9OO9pwyBCcBoxPE=">AAACzHicjVFNaxsxEJW3X6n75aTHXkRNIIVgdkNoe0xpS3NoQwp1EvAaMyvPOsKSdpFmg43Ya39GD720f6n/plrblNruoQOCx3szb2Y0Wamkozj+1Ypu3b5z997O/faDh48eP+ns7l24orIC+6JQhb3KwKGSBvskSeFVaRF0pvAym75t9MsbtE4W5gvNSxxqmBiZSwEUqFFnL9VA11nu39cjn1rNP9WjTjfuxYvg2yBZgS5bxflot/U9HRei0mhIKHBukMQlDT1YkkJh3U4rhyWIKUxwEKABjW7oF8PXfD8wY54XNjxDfMH+XeFBOzfXWchsRnWbWkP+SxtUlL8eemnKitCIZaO8UpwK3vwEH0uLgtQ8ABBWhlm5uAYLgsJ/tdfaLMxLFGur+FllpCjGuMEqmpGFur2fOiQN0jR7+VNUNxh6AD/DCv+owbeRD97JiSR3+DGcxRx+sIjTF1sla35vrAT1XzbLzHDVZPOG2+DiqJe87B1/Pu6eHK3uu8OesefsgCXsFTthp+yc9ZlgM/aN/WA/o7OIIh/Vy9Sotap5ytYi+vobUmnjMQ==</latexit>

EM
<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(a) G1

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(b) G2

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(c) GU

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

<latexit sha1_base64="7D2hCvOUx17eEaAEgY4/0uiKRE8=">AAACuXicjVHbSiNBEO3Mes2ut/XRl8YgZCGEGREVfFFWWB+WRcFoIAmhplNJ2vT0DN01YhjyBfuqP7B/5d/YkwQxiQ9b0HA4p+pUVVeYKGnJ918L3pel5ZXVtfXi128bm1vbO9/vbJwagTURq9jUQ7CopMYaSVJYTwxCFCq8Dwc/c/3+EY2Vsb6lYYKtCHpadqUActTNsL1d8qv+OPgiCKagxKZx3d4p/Gt2YpFGqEkosLYR+Am1MjAkhcJRsZlaTEAMoIcNBzVEaFvZeNIRP3BMh3dj454mPmY/VmQQWTuMQpcZAfXtvJaTn2mNlLqnrUzqJCXUYtKomypOMc/X5h1pUJAaOgDCSDcrF30wIMh9TnGmzdg8QTGzSvaUainiDs6xip7IwKh40LRIEUid75VdoXpE1wP4H0zxXXW+uVy+lD1JtvLb3UBXfhnEwY+Fkhm/CyNB/ZfNJNNdNZi/4SK4O6wGx9Wjm6PS+eH0vmtsj+2zMgvYCTtnV+ya1ZhgyP6yZ/binXng9b2HSapXmNbsspnw7BuwdtvF</latexit>y

(d) GF

<latexit sha1_base64="7D2hCvOUx17eEaAEgY4/0uiKRE8=">AAACuXicjVHbSiNBEO3Mes2ut/XRl8YgZCGEGREVfFFWWB+WRcFoIAmhplNJ2vT0DN01YhjyBfuqP7B/5d/YkwQxiQ9b0HA4p+pUVVeYKGnJ918L3pel5ZXVtfXi128bm1vbO9/vbJwagTURq9jUQ7CopMYaSVJYTwxCFCq8Dwc/c/3+EY2Vsb6lYYKtCHpadqUActTNsL1d8qv+OPgiCKagxKZx3d4p/Gt2YpFGqEkosLYR+Am1MjAkhcJRsZlaTEAMoIcNBzVEaFvZeNIRP3BMh3dj454mPmY/VmQQWTuMQpcZAfXtvJaTn2mNlLqnrUzqJCXUYtKomypOMc/X5h1pUJAaOgDCSDcrF30wIMh9TnGmzdg8QTGzSvaUainiDs6xip7IwKh40LRIEUid75VdoXpE1wP4H0zxXXW+uVy+lD1JtvLb3UBXfhnEwY+Fkhm/CyNB/ZfNJNNdNZi/4SK4O6wGx9Wjm6PS+eH0vmtsj+2zMgvYCTtnV+ya1ZhgyP6yZ/binXng9b2HSapXmNbsspnw7BuwdtvF</latexit>y

<latexit sha1_base64="ITZaJfsMf6+k09wCgHRV6O7CMyc=">AAACu3icjVHBSiNBEO3MuupG19X16KUxCAoSZkR2vQiKwnoQUTQqJCHUdCqxNz09Q3e1GIZ8gtfd+/6Vf7M9SRCTeLCg4fFe1auqrjhT0lIYvpSCT3Of5xcWv5SXlr+ufFtd+35rU2cE1kSqUnMfg0UlNdZIksL7zCAkscK7uHdS6HePaKxM9Q31M2wm0NWyIwWQp66jVtRarYTVcBh8FkRjUGHjuGytlf412qlwCWoSCqytR2FGzRwMSaFwUG44ixmIHnSx7qGGBG0zH8464FueafNOavzTxIfs24ocEmv7SewzE6AHO60V5Hta3VHnoJlLnTlCLUaNOk5xSnmxOG9Lg4JU3wMQRvpZuXgAA4L895Qn2gzNMxQTq+RPTkuRtnGKVfREBgblrYZFSkDqYq/8DNUj+h7AL9Dhq+p9C3n7VHYl2d1zfwW9+8sg9nZmSib8jo0E9SGbUaa/ajR9w1lwu1eNflT3r/YrR3vj+y6yDbbJtlnEfrIjdsYuWY0J1mXP7A/7GxwGIvgdqFFqUBrXrLOJCNx/pJrcIQ==</latexit>

11

<latexit sha1_base64="9UEkfh74UxSxmISi3/7TqE82C/o=">AAACu3icjVHfSxtBEN6c2mrU1h+PviwGQUHCXZC2LwVLhfogomhUSEKY20ziNnt7x+6sGI78CX1t3/tf+d+4lwQxiQ8OLHx838w3MztxpqSlMHwqBQuLSx8+Lq+UV9fWP33e2Ny6sakzAusiVam5i8GikhrrJEnhXWYQkljhbdz/Wei3D2isTPU1DTJsJdDTsisFkKeuau2ovVEJq+Eo+DyIJqDCJnHR3iz9b3ZS4RLUJBRY24jCjFo5GJJC4bDcdBYzEH3oYcNDDQnaVj6adcj3PNPh3dT4p4mP2NcVOSTWDpLYZyZA93ZWK8i3tIaj7rdWLnXmCLUYN+o6xSnlxeK8Iw0KUgMPQBjpZ+XiHgwI8t9TnmozMs9QTK2SPzotRdrBGVbRIxkYlveaFikBqYu98lNUD+h7AD9Hhy+q9y3k/RPZk2QPz/wV9OEvg9g/mCuZ8vthJKh32Ywz/VWj2RvOg5taNfpSPbo8qhzXJvddZjtsl+2ziH1lx+yUXbA6E6zH/rC/7F/wPRDB70CNU4PSpGabTUXgngGm8dwi</latexit>

21

<latexit sha1_base64="3Tj8+misl9G86r3oAJMH8aiN8iw=">AAACu3icjVHfSxtBEN6cttpY66/HviwNgoKEOxX1RVAs6EMpio0KSQhzm0lcs7d37M6K4cif0Nf23f/K/8a9JBST+NCBhY/vm/lmZifOlLQUhi+lYG7+w8eFxU/lpc/LX1ZW19ZvbOqMwJpIVWruYrCopMYaSVJ4lxmEJFZ4G/fOCv32EY2Vqf5F/QybCXS17EgB5KnrvVbUWq2E1XAYfBZEY1Bh47hsrZWeG+1UuAQ1CQXW1qMwo2YOhqRQOCg3nMUMRA+6WPdQQ4K2mQ9nHfBNz7R5JzX+aeJD9m1FDom1/ST2mQnQvZ3WCvI9re6oc9TMpc4coRajRh2nOKW8WJy3pUFBqu8BCCP9rFzcgwFB/nvKE22G5hmKiVXyJ6elSNs4xSp6IgOD8mbDIiUgdbFXfoHqEX0P4D/R4T/V+xby1nfZlWR3fvgr6J1zg9jbnimZ8Ds1EtR/2Ywy/VWj6RvOgpvdanRQ3b/ar5zsju+7yL6yb2yLReyQnbALdslqTLAu+83+sL/BcSCCh0CNUoPSuGaDTUTgXgGpSNwj</latexit>

31

<latexit sha1_base64="1U3l/sViK9U/ZhDfKHen/1m8ZNE=">AAACu3icjVHfSxtBEN6c2mrU1h+PviwGQUHCnYS2LwVLhfogomhUSEKY20ziNnt7x+6sGI78CX1t3/tf+d+4lwQxiQ8OLHx838w3MztxpqSlMHwqBQuLSx8+Lq+UV9fWP33e2Ny6sakzAusiVam5i8GikhrrJEnhXWYQkljhbdz/Wei3D2isTPU1DTJsJdDTsisFkKeuau2ovVEJq+Eo+DyIJqDCJnHR3iz9b3ZS4RLUJBRY24jCjFo5GJJC4bDcdBYzEH3oYcNDDQnaVj6adcj3PNPh3dT4p4mP2NcVOSTWDpLYZyZA93ZWK8i3tIaj7rdWLnXmCLUYN+o6xSnlxeK8Iw0KUgMPQBjpZ+XiHgwI8t9TnmozMs9QTK2SPzotRdrBGVbRIxkYlveaFikBqYu98lNUD+h7AD9Hhy+q9y3k/RPZk2QPz/wV9OEvg9g/mCuZ8vthJKh32Ywz/VWj2RvOg5ujavSlWrusVY6PJvddZjtsl+2ziH1lx+yUXbA6E6zH/rC/7F/wPRDB70CNU4PSpGabTUXgngGrn9wk</latexit>

41
<latexit sha1_base64="95DzUCzk+BYmQtD0I4KZYqSsrYA=">AAACu3icjVFNaxsxEJU3zUfd5rPHXkRNIIVgdo1Jcim4tJAcSklpnARsY2blsa1Yq12kkYlZ/BN6be/5V/031dqm1HYOHRA83pt5M6OJMyUtheHvUrDxYnNre+dl+dXr3b39g8OjW5s6I7ApUpWa+xgsKqmxSZIU3mcGIYkV3sWjT4V+N0ZjZapvaJJhJ4GBln0pgDz1vd6tdQ8qYTWcBV8H0QJU2CKuu4elp3YvFS5BTUKBta0ozKiTgyEpFE7LbWcxAzGCAbY81JCg7eSzWaf82DM93k+Nf5r4jP23IofE2kkS+8wEaGhXtYJ8Tms56l90cqkzR6jFvFHfKU4pLxbnPWlQkJp4AMJIPysXQzAgyH9PeanNzDxDsbRK/ui0FGkPV1hFj2RgWj5uW6QEpC72yq9QjdH3AP4VHf5VvW8hn3yWA0n29Iu/gj69NIij92slS34fjQT1XzbzTH/VaPWG6+C2Vo3OqvVv9UqjtrjvDnvL3rETFrFz1mBX7Jo1mWAD9oP9ZL+CD4EIHgI1Tw1Ki5o3bCkC9wet9Nwl</latexit>

42

<latexit sha1_base64="zvv+ufuJrFFV3IByUZRYJLHZgD0=">AAACu3icjVFRSxtBEN6c1tq0Wq2PfVkMggUJd1GqLwVFQR9KsdSokIQwt5nEbfb2jt1ZMRz5Cb7qu/+q/6Z7SRCT+ODAwsf3zXwzsxNnSloKw3+lYGHx3dL75Q/lj59WVj+vrX+5tKkzAusiVam5jsGikhrrJEnhdWYQkljhVdw/LvSrWzRWpvqCBhm2Euhp2ZUCyFN/dtu19lolrIaj4PMgmoAKm8R5e7301OykwiWoSSiwthGFGbVyMCSFwmG56SxmIPrQw4aHGhK0rXw065BveabDu6nxTxMfsS8rckisHSSxz0yAbuysVpCvaQ1H3YNWLnXmCLUYN+o6xSnlxeK8Iw0KUgMPQBjpZ+XiBgwI8t9TnmozMs9QTK2S3zktRdrBGVbRHRkYlreaFikBqYu98jNUt+h7AP+FDp9V71vI2yeyJ8nu/PRX0DunBrH/ba5kyu/ISFBvshln+qtGszecB5e1avS9uvd7r3JYm9x3mX1lm2ybRWyfHbIzds7qTLAeu2cP7DH4EYjgb6DGqUFpUrPBpiJw/wGrndwk</latexit>

32

<latexit sha1_base64="RvKa28OGvIz8tsEPhXDIh/UxzRQ=">AAACu3icjVHfSxtBEN6c1mpq/fnoy2IQFCTcBWn7UrBUqA8iikaFJIS5zSSu2ds7dmfFcORP6Gv73v/K/8a9JIhJfOjAwsf3zXwzsxNnSloKw+dSsLD4Yenj8kr50+rntfWNza0bmzojsC5SlZq7GCwqqbFOkhTeZQYhiRXexv2fhX77iMbKVF/TIMNWAj0tu1IAeeqq1q61NyphNRwFnwfRBFTYJC7am6V/zU4qXIKahAJrG1GYUSsHQ1IoHJabzmIGog89bHioIUHbykezDvmeZzq8mxr/NPER+7Yih8TaQRL7zATo3s5qBfme1nDU/dbKpc4coRbjRl2nOKW8WJx3pEFBauABCCP9rFzcgwFB/nvKU21G5hmKqVXyJ6elSDs4wyp6IgPD8l7TIiUgdbFXforqEX0P4Ofo8FX1voW8fyJ7kuzhmb+CPvxlEPsHcyVTfj+MBPVfNuNMf9Vo9obz4KZWjb5Ujy6PKse1yX2X2Q7bZfssYl/ZMTtlF6zOBOux3+wP+xt8D0TwEKhxalCa1GyzqQjcC6lG3CM=</latexit>

22

<latexit sha1_base64="GP2ihqxmBtt+TDUW2M5JA8bANYI=">AAACu3icjVHfSxtBEN6c2mrU1h+PviwGQUHCXZC2LwVLhfogomhUSEKY20ziNnt7x+6sGI78CX1t3/tf+d+4lwQxiQ8OLHx838w3MztxpqSlMHwqBQuLSx8+Lq+UV9fWP33e2Ny6sakzAusiVam5i8GikhrrJEnhXWYQkljhbdz/Wei3D2isTPU1DTJsJdDTsisFkKeuonatvVEJq+Eo+DyIJqDCJnHR3iz9b3ZS4RLUJBRY24jCjFo5GJJC4bDcdBYzEH3oYcNDDQnaVj6adcj3PNPh3dT4p4mP2NcVOSTWDpLYZyZA93ZWK8i3tIaj7rdWLnXmCLUYN+o6xSnlxeK8Iw0KUgMPQBjpZ+XiHgwI8t9TnmozMs9QTK2SPzotRdrBGVbRIxkYlveaFikBqYu98lNUD+h7AD9Hhy+q9y3k/RPZk2QPz/wV9OEvg9g/mCuZ8vthJKh32Ywz/VWj2RvOg5taNfpSPbo8qhzXJvddZjtsl+2ziH1lx+yUXbA6E6zH/rC/7F/wPRDB70CNU4PSpGabTUXgngGm79wi</latexit>

12

(e) GC

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(f) GM

Figure 1: (a) and (b) are the component DAGs; (c) is the union graph; (d) is the fused graph; (e) is the composite DAG;
and (f) is the mixture graph. Note that mixture graph GM has emergent edges EE = {(1− 3), (2− 4)}. This example
assumes that if parents of a node are invariant, then its conditional distribution is also invariant, and set ∆ = {2, 3}.

Clearly, if the pair (i, j) is connected in at least one of the graphs G1 and G2, then EM will contain the edge (i− j).
Finally, we specify the set of edges in the mixture graph GM that are separable in each individual distribution p1 and p2
but become inseparable in the mixture distribution pM.

Definition 8 (Emergent Edge) The edge (i − j) in the mixture graph GM is called an emergent edge if the pair of
nodes i and j are not adjacent in G1 and G2 but become inseparable in pM. The set of emergent edges is given by

EE ≜ {(i− j) : i, j ∈ V, (i− j) /∈ EU ∧ ∄A ⊆ V \ {i, j} : Xi ⊥⊥ Xj | XA} . (8)

Based on the definitions of EU and EE we clearly have EM = EU ∪EE. Finally, we define a set of causal paths that
pass through one or more nodes in ∆. These causal paths are instrumental in specifying the separability conditions.

Definition 9 (∆-through Path) We say that a causal path in Gℓ between i and j is a ∆-through path, denoted by

i
∆ℓ⇝ j, if it passes through at least one node in ∆, i.e., there exists u ∈ ∆ such that i

ℓ
⇝ u

ℓ
⇝ j.

3 Causal Discovery Objective

We aim to address the following questions. What causal relationships can be learned about a mixture of DAGs? What
is a graphical representation that can effectively specify these relationships?

These questions are well-investigated when analyzing individual DAGs. In the individual DAG Gℓ, each edge denotes an
inseparable pair in pℓ. The components of Gℓ that are learnable from observational data are characterized by a Markov
equivalence class (Verma & Pearl, 1992) and represented by a completed partially DAG (CPDAG). Such notions and
decisions do not have well-established counterparts when the observations are generated by a mixture distribution pM
arising from a mixture of DAGs.

Identifying the inseparable node pairs is the cornerstone of constraint-based causal discovery. Therefore, the leap from
the causal discovery of individual DAGs to causal discovery from a mixture of them critically hinges on determining the
separability of nodes in the mixture model. We use the undirected mixture graph GM, which represents the inseparable
pairs, to identify such pairs. This will be the critical initial step for the graphical representation of a mixture of DAGs.
We note that the existence of emergent edges, i.e., the pair of nodes that are inseparable in mixture distribution but are
separable in component distributions, is the main challenge that makes the causal discovery of a mixture of DAGs more
complex than that of a single DAG. Therefore, our objectives in the paper are centered around separability analysis, and
they include:

Objective1: establishing the conditions that make a pair of nodes an emergent edge;

Objective2: graphically representing these conditions by orienting the edges of the mixture graph;

Objective3: and partially recovering these orientations.

6

Published in Transactions on Machine Learning Research (01/2024)

4 Separability Analysis in Mixture Graphs

In this section, we first study Objective1 and investigate the conditions under which a pair of nodes in a mixture model
are inseparable. We start by considering an arbitrary pair of DAGs G1 and G2 without any constraints. We establish
sufficient conditions under which any arbitrary pair of nodes in the mixture of G1 and G2 is separable. In the next
step, we focus on tree-structured DAGs for which we tighten our sufficient conditions results and also show that
these conditions are the necessary conditions, establishing the tightness of the results for tree-structured DAGs. For
Objective2, i.e., orienting the mixture graph, we introduce new edge notations and graphically represent the established
necessary and sufficient conditions. For Objective3, we analyze which of these edges can be inferred by performing
conditional independence tests. For each result, we discuss the implications of our results and representations with
respect to the existing representations of DAGs’ mixtures. Finally, we devise an algorithm for learning the mixture
graph based on our theoretical results. Proofs of the results are deferred to Appendix A.

4.1 Separability in General Graphs

Our separability analysis requires establishing a connection between the mixture distribution and the structure of the
component DAGs. Composite DAG representation provides us with this connection through the following result.

Theorem 1 (Markov property,(Saeed et al., 2020, Theorem 3.2)) Let A, B, C ⊆ V be disjoint. If Ā and B̄ are d-
separated given C̄ in composite DAG, then XA and XB are conditionally independent given XC in mixture distribution.

We note that Theorem 1 in conjunction with the mixture faithfulness assumption implies that all conditional indepen-
dencies that can be tested from pM can be inferred by the separation statements in GC. Using Theorem 1 and mixture
faithfulness, we can immediately conclude that the definition of emergent edges in (8) is equivalent to

EE = {(i− j) : i, j ∈ V, (i− j) /∈ EU ∧ ∄A ⊆ V \ {i, j} : i ⊥⊥M j | A} . (9)

Hence, the separability of two nodes in mixture distribution is equivalent to the separability of the nodes in composite
DAG GC. Hence, an important observation is that the separability of two nodes depends on whether they have distinct
conditional probability models in the component DAGs, i.e., their membership in ∆ defined in (3). This is because the
paths that stretch over G1 and G2 in GC necessarily pass through nodes in ∆. The following theorem investigates all
possible configurations and presents sufficient conditions for two nodes to be separable in a mixture of arbitrary DAGs.

Theorem 2 (Separability – Sufficient Conditions) Consider nodes i, j ∈ V such that i and j are not adjacent in
either component DAG, i.e., (i− j) /∈ EU.

Case 1) i ∈ ∆, j ∈ ∆: i and j are always inseparable.
Case 2) i /∈ ∆, j /∈ ∆: i and j are separable if the component DAGs do not have ∆-through paths between i and j in

opposite directions. That is, if one DAG contains a ∆-through path from i to j, then the other one does not
have a ∆-through path from j to i.

Case 3) i /∈ ∆, j ∈ ∆: i and j are separable if neither of the component DAGs contains a ∆-through path from i to j.

The inseparability of the nodes i, j ∈ ∆ is due to the path i
ℓ← y

ℓ→ j in composite DAG. The second case of
Theorem 2 implies that if nodes i /∈ ∆, j /∈ ∆ are inseparable, i.e., they form an emergent edge, then for some distinct

ℓ, ℓ′ ∈ {1, 2}, we have i
∆ℓ⇝ j and j

∆ℓ′
⇝ j. The third case implies that if i /∈ ∆ and j ∈ ∆ are inseparable, then we have

i
∆ℓ⇝ j for some ℓ ∈ {1, 2}. We have |∆| ≥ 2 for all three cases. Hence, when |∆| = 1, the mixture of DAGs does not

create any cycle, and we have EE = ∅. The next observation of Theorem 2 is on the different formations of cycles in a
mixture of DAGs. To highlight the shortcomings of the fused graph GF in representing a mixture of DAGs, we provide
the following remark and example.

Remark 1 Note that i
1
⇝ j and j

2
⇝ i imply a cyclic relationship between i and j in fused graph GF. However, the

reverse direction is not always true, i.e., i and j can be part of a cycle in GF without being ancestors of each other in
the component DAGs.

7

Published in Transactions on Machine Learning Research (01/2024)

<latexit sha1_base64="ct5o3ABHlfPJ6xo9i83RnbPkXQw=">AAACxHicjVHfSxtBEN6c1dpYf/axL0uDYEHCnYj1UdG2PpRiwaiQC2FuM5cs2ds7dmfFcKR/Rl9b+l/1v+leEkqT+ODAwsf3zXwzs5MUSloKwz+1YOXF6trL9Vf1jdebW9s7u3u3NndGYEvkKjf3CVhUUmOLJCm8LwxClii8S4YXlX73gMbKXN/QqMBOBn0tUymAPBXHGdAgScuP427U3WmEzXASfBlEM9Bgs7ju7tZ+x71cuAw1CQXWtqOwoE4JhqRQOK7HzmIBYgh9bHuoIUPbKSdDj/m+Z3o8zY1/mviE/b+ihMzaUZb4zGpIu6hV5FNa21F62imlLhyhFtNGqVOccl79AO9Jg4LUyAMQRvpZuRiAAUH+n+pzbSbmBYq5VcpHp6XIe7jAKnokA+P6fmyRMpC62qu8QvWAvgfwr+jwn+p9K/ngUvYl2cMv/hz68LNBHL5fKpnzOzcS1LNsppn+qtHiDZfB7VEzOmkefztunB3N7rvO3rJ37IBF7AM7Y1fsmrWYYAX7wX6yX8GnQAU2cNPUoDarecPmIvj+Fw4e4FU=</latexit>

E1
<latexit sha1_base64="Bq3VlfF6NhwJIGrMXDfhSr5W4SE=">AAACxHicjVFRSxtBEN5crbVpa7V97MtiECxIuAvS9tHS1vpQRMGokAthbjMXl+ztHbuzYjjiz/BV8V/133QvCWISHzqw8PF9M9/M7CSFkpbC8G8teLHycvXV2uv6m7fv1t9vbH44s7kzAtsiV7m5SMCikhrbJEnhRWEQskTheTL8UennV2iszPUpjQrsZjDQMpUCyFNxnAFdJmn5a9xr9TYaYTOcBF8G0Qw02CyOe5u1h7ifC5ehJqHA2k4UFtQtwZAUCsf12FksQAxhgB0PNWRou+Vk6DHf9kyfp7nxTxOfsE8rSsisHWWJz6yGtItaRT6ndRyl37ql1IUj1GLaKHWKU86rH+B9aVCQGnkAwkg/KxeXYECQ/6f6XJuJeYFibpXy2mkp8j4usIquycC4vh1bpAykrvYqD1Fdoe8B/AgdPqret5J3fsqBJLv7x59D7/42iMPPSyVzft+NBPVfNtNMf9Vo8YbL4KzVjL409072Gvut2X3X2Ce2xXZYxL6yfXbIjlmbCVawW3bH7oODQAU2cNPUoDar+cjmIrj5BxBz4FY=</latexit>

E2
<latexit sha1_base64="VCiS+8dGgFCynvk62PcbAI67owM=">AAAC2HicjVFRaxNBEN6cVmusmuqjIEtDoUIJd6FoH1uq2AeRFpq2NBfC3GYuXbK3d+zOhYQj0AdBfPUn+Oir/hn/jXtJKE3iQwcWPr5v5puZnShT0pLv/614Dx6uPXq8/qT6dOPZ8xe1zZfnNs2NwJZIVWouI7CopMYWSVJ4mRmEJFJ4EQ2OSv1iiMbKVJ/ROMNOAn0tYymAHNWtvQkToOsoLj5OugEPBWT8DtPs1up+w58GXwXBHNTZPE66m5WfYS8VeYKahAJr24GfUacAQ1IonFTD3GIGYgB9bDuoIUHbKaaLTPi2Y3o8To17mviUvVtRQGLtOIlcZjmkXdZK8n9aO6d4v1NIneWEWswaxbnilPLyV3hPGhSkxg6AMNLNysU1GBDk/q660GZqnqFYWKUY5VqKtIdLrKIRGZhUt0OLlIDU5V7FMaohuh7Av2COt6rzLeWdD7Ivye5+difSu58M4uDtSsmC36GRoO5lM8t0Vw2Wb7gKzpuN4F1j73SvftCc33edvWZbbIcF7D07YMfshLWYYF/ZL/ab/fGuvBvvm/d9lupV5jWv2EJ4P/4BzNvnpg==</latexit>

E1 \ E2
<latexit sha1_base64="iCjICzsQ8aC/9OO9pwyBCcBoxPE=">AAACzHicjVFNaxsxEJW3X6n75aTHXkRNIIVgdkNoe0xpS3NoQwp1EvAaMyvPOsKSdpFmg43Ya39GD720f6n/plrblNruoQOCx3szb2Y0Wamkozj+1Ypu3b5z997O/faDh48eP+ns7l24orIC+6JQhb3KwKGSBvskSeFVaRF0pvAym75t9MsbtE4W5gvNSxxqmBiZSwEUqFFnL9VA11nu39cjn1rNP9WjTjfuxYvg2yBZgS5bxflot/U9HRei0mhIKHBukMQlDT1YkkJh3U4rhyWIKUxwEKABjW7oF8PXfD8wY54XNjxDfMH+XeFBOzfXWchsRnWbWkP+SxtUlL8eemnKitCIZaO8UpwK3vwEH0uLgtQ8ABBWhlm5uAYLgsJ/tdfaLMxLFGur+FllpCjGuMEqmpGFur2fOiQN0jR7+VNUNxh6AD/DCv+owbeRD97JiSR3+DGcxRx+sIjTF1sla35vrAT1XzbLzHDVZPOG2+DiqJe87B1/Pu6eHK3uu8OesefsgCXsFTthp+yc9ZlgM/aN/WA/o7OIIh/Vy9Sotap5ytYi+vobUmnjMQ==</latexit>

EM
<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1
<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2
<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3
<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4
<latexit sha1_base64="UtBZtnXomeCCKR0bDOkoR2i17Uk=">AAACuXicjVHfaxpBEF6vaZvaHzHNY16WSCCFIHfBtIW+WFqIDyEkEKOgEubWUTfu7R27c6Ic/gV9Tf+B/Ff5b7qnEqLmoQMLH983883MTpgoacn3Hwveq63Xb95uvyu+//Dx005p9/ONjVMjsCFiFZtWCBaV1NggSQpbiUGIQoXNcPQr15tjNFbG+pqmCXYjGGjZlwLIUVent6WyX/HnwTdBsARltozL293CQ6cXizRCTUKBte3AT6ibgSEpFM6KndRiAmIEA2w7qCFC283mk874oWN6vB8b9zTxOfu8IoPI2mkUuswIaGjXtZx8SWun1P/ezaROUkItFo36qeIU83xt3pMGBampAyCMdLNyMQQDgtznFFfazM0TFCurZJNUSxH3cI1VNCEDs+JhxyJFIHW+V1ZHNUbXA/gFpvikOt9cPvotB5Ls8bm7gT4+M4ijLxslK34/jQT1XzaLTHfVYP2Gm+DmpBJ8rVSvquXayfK+22yfHbAjFrBvrMbq7JI1mGDI/rB79tf74YE39O4WqV5hWbPHVsKz/wAR4tuB</latexit>

5

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1
<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2
<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3
<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4
<latexit sha1_base64="UtBZtnXomeCCKR0bDOkoR2i17Uk=">AAACuXicjVHfaxpBEF6vaZvaHzHNY16WSCCFIHfBtIW+WFqIDyEkEKOgEubWUTfu7R27c6Ic/gV9Tf+B/Ff5b7qnEqLmoQMLH983883MTpgoacn3Hwveq63Xb95uvyu+//Dx005p9/ONjVMjsCFiFZtWCBaV1NggSQpbiUGIQoXNcPQr15tjNFbG+pqmCXYjGGjZlwLIUVent6WyX/HnwTdBsARltozL293CQ6cXizRCTUKBte3AT6ibgSEpFM6KndRiAmIEA2w7qCFC283mk874oWN6vB8b9zTxOfu8IoPI2mkUuswIaGjXtZx8SWun1P/ezaROUkItFo36qeIU83xt3pMGBampAyCMdLNyMQQDgtznFFfazM0TFCurZJNUSxH3cI1VNCEDs+JhxyJFIHW+V1ZHNUbXA/gFpvikOt9cPvotB5Ls8bm7gT4+M4ijLxslK34/jQT1XzaLTHfVYP2Gm+DmpBJ8rVSvquXayfK+22yfHbAjFrBvrMbq7JI1mGDI/rB79tf74YE39O4WqV5hWbPHVsKz/wAR4tuB</latexit>

5

(a) G1 and G2

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1
<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2
<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3
<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4
<latexit sha1_base64="UtBZtnXomeCCKR0bDOkoR2i17Uk=">AAACuXicjVHfaxpBEF6vaZvaHzHNY16WSCCFIHfBtIW+WFqIDyEkEKOgEubWUTfu7R27c6Ic/gV9Tf+B/Ff5b7qnEqLmoQMLH983883MTpgoacn3Hwveq63Xb95uvyu+//Dx005p9/ONjVMjsCFiFZtWCBaV1NggSQpbiUGIQoXNcPQr15tjNFbG+pqmCXYjGGjZlwLIUVent6WyX/HnwTdBsARltozL293CQ6cXizRCTUKBte3AT6ibgSEpFM6KndRiAmIEA2w7qCFC283mk874oWN6vB8b9zTxOfu8IoPI2mkUuswIaGjXtZx8SWun1P/ezaROUkItFo36qeIU83xt3pMGBampAyCMdLNyMQQDgtznFFfazM0TFCurZJNUSxH3cI1VNCEDs+JhxyJFIHW+V1ZHNUbXA/gFpvikOt9cPvotB5Ls8bm7gT4+M4ijLxslK34/jQT1XzaLTHfVYP2Gm+DmpBJ8rVSvquXayfK+22yfHbAjFrBvrMbq7JI1mGDI/rB79tf74YE39O4WqV5hWbPHVsKz/wAR4tuB</latexit>

5

<latexit sha1_base64="7D2hCvOUx17eEaAEgY4/0uiKRE8=">AAACuXicjVHbSiNBEO3Mes2ut/XRl8YgZCGEGREVfFFWWB+WRcFoIAmhplNJ2vT0DN01YhjyBfuqP7B/5d/YkwQxiQ9b0HA4p+pUVVeYKGnJ918L3pel5ZXVtfXi128bm1vbO9/vbJwagTURq9jUQ7CopMYaSVJYTwxCFCq8Dwc/c/3+EY2Vsb6lYYKtCHpadqUActTNsL1d8qv+OPgiCKagxKZx3d4p/Gt2YpFGqEkosLYR+Am1MjAkhcJRsZlaTEAMoIcNBzVEaFvZeNIRP3BMh3dj454mPmY/VmQQWTuMQpcZAfXtvJaTn2mNlLqnrUzqJCXUYtKomypOMc/X5h1pUJAaOgDCSDcrF30wIMh9TnGmzdg8QTGzSvaUainiDs6xip7IwKh40LRIEUid75VdoXpE1wP4H0zxXXW+uVy+lD1JtvLb3UBXfhnEwY+Fkhm/CyNB/ZfNJNNdNZi/4SK4O6wGx9Wjm6PS+eH0vmtsj+2zMgvYCTtnV+ya1ZhgyP6yZ/binXng9b2HSapXmNbsspnw7BuwdtvF</latexit>y

(b) GF

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3
<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

<latexit sha1_base64="UtBZtnXomeCCKR0bDOkoR2i17Uk=">AAACuXicjVHfaxpBEF6vaZvaHzHNY16WSCCFIHfBtIW+WFqIDyEkEKOgEubWUTfu7R27c6Ic/gV9Tf+B/Ff5b7qnEqLmoQMLH983883MTpgoacn3Hwveq63Xb95uvyu+//Dx005p9/ONjVMjsCFiFZtWCBaV1NggSQpbiUGIQoXNcPQr15tjNFbG+pqmCXYjGGjZlwLIUVent6WyX/HnwTdBsARltozL293CQ6cXizRCTUKBte3AT6ibgSEpFM6KndRiAmIEA2w7qCFC283mk874oWN6vB8b9zTxOfu8IoPI2mkUuswIaGjXtZx8SWun1P/ezaROUkItFo36qeIU83xt3pMGBampAyCMdLNyMQQDgtznFFfazM0TFCurZJNUSxH3cI1VNCEDs+JhxyJFIHW+V1ZHNUbXA/gFpvikOt9cPvotB5Ls8bm7gT4+M4ijLxslK34/jQT1XzaLTHfVYP2Gm+DmpBJ8rVSvquXayfK+22yfHbAjFrBvrMbq7JI1mGDI/rB79tf74YE39O4WqV5hWbPHVsKz/wAR4tuB</latexit>

5

(c) GM

Figure 2: An example of the cases discussed in Remark 1. In this example, we have a cycle passing through all nodes.
However, 2 and 4 are separable since there is no ∆-through path from 2 to 4.

Example. Figure 2 illustrates the shortcomings of the fused graph through an example. Fused graph GF allows
us to visualize cycles in a single directed graph over V ∪ {y}. However, two nodes that are part of a cycle in this
representation do not necessarily form an emergent edge. For instance, despite the cycle (1→ 2→ 3→ 4→ 5→ 1)
in GF, neither of the pairs (2− 4) or (3− 5) forms an emergent edge. Furthermore, GF implies that one of the paths
2 → 3 → 4 (if 3 is not conditioned on) and 2 → 3 ← y → 4 (if 3 is conditioned on) is always active. However, we
have 2 ⊥⊥M 4 | 1. In fact, 2 and 4 are unconditionally independent, showing that GF is not a great representation.
Therefore, for modeling a mixture of DAGs, it is important to distinguish between the directed paths in a component
DAG and those formed by superposing the two component DAGs.

So far, we have discussed a mixture of DAGs without any structural constraints on the components of the mixture. Next,
we focus on the mixtures of tree-structured DAGs and further improve the separability results.

4.2 Properties of Tree Mixtures

Imposing tree structures on DAGs G1 and G2 facilitates a tighter analysis of the separability of two nodes (or, equivalently,
the conditions in which emergent edges are formed). The following theorem establishes sufficient conditions for the
separability of a node pair in a mixture of tree DAGs. These sufficient conditions are less stringent than those presented
for general DAGs in Theorem 2. Specifically, instead of ruling out all ∆-through paths from i to j, we rule out only
a subset of them in which the child of i on the path is in ∆. Furthermore, we show that the refined conditions are
necessary conditions too.

Theorem 3 (Separability in Tree Structures – Necessary and Sufficient Conditions) Suppose that G1 and G2 are
tree-structured DAGs. Consider nodes i, j ∈ V such that i and j are not adjacent in component DAGs, i.e., (i−j) /∈ EU.

Case 1) i ∈ ∆ and j ∈ ∆: i and j are always inseparable.
Case 2) i /∈ ∆ and j /∈ ∆: i and j are separable if and only if component DAGs do not have ∆-through paths between

i and j in opposite directions such that the children of i and j on the paths are in ∆.
Case 3) i /∈ ∆ and j ∈ ∆: i and j are separable if and only if neither of the component DAGs contains a ∆-through

path from i to j such that the child of i on the path is in ∆.

The first case is identical to the first case of Theorem 2. However, the sufficient conditions for i and j being separable
in the second and third cases are tighter than their counterparts in Theorem 2. Specifically, the existence of ∆-through
paths is refined to the existence of ∆-through paths with the additional condition that the child of the ancestor node of
the path is in ∆. Furthermore, this tightened sufficient condition is also shown to be necessary.

Theorem 3 also implies the necessary and sufficient conditions for (i− j) being an emergent edge since if (i− j) /∈ EU
and i and j are inseparable, then (i− j) is an emergent edge. Formally, Case 2 implies that, for i /∈ ∆, j /∈ ∆, we have

(i− j) ∈ EE ⇐⇒ ∃ℓ, ℓ′ ∈ {1, 2}, ∃u, v ∈ ∆, u ̸= v : i
ℓ→ u

ℓ
⇝ j , and j

ℓ′

→ v
ℓ′

⇝ i . (10)

Next, Case 3 implies that for i /∈ ∆, j ∈ ∆, we have

(i− j) ∈ EE ⇐⇒ ∃ℓ ∈ {1, 2},∃u ∈ ∆ : i
ℓ→ u

ℓ
⇝ j . (11)

8

Published in Transactions on Machine Learning Research (01/2024)

Hence, Theorem 3 provides a complete explanation for the emergent edges in mixture graph GM. Notably, the approach
of Saeed et al. (2020) is not valid for a mixture of tree-structured DAGs in general. Specifically, motivated by the latent
representation of the mixing variable via node y, (Saeed et al., 2020) constructs MAGsMℓ from the sub-DAG induced
by composite DAG GC over the nodes Gℓ ∪ {y} and takes a union ofMℓ’s. It proceeds to learn the union MAG by
performing fast causal inference (FCI) (Spirtes et al., 2000). However, to obtain a valid union MAG,M1 andM2
should have a shared partial order on V. This assumption (called poset compatibility) is violated by the condition in
(10) due to having a cycle in the mixture and by (11) due to having a causal path between two nodes in ∆.

Searching for a separating set. After establishing the conditions for two nodes to be separable, our next result shows
that the size of the smallest separating set is bounded.

Lemma 1 (Size of the separating set for mixture of trees) Suppose that G1 and G2 are tree-structured DAGs i and j
are separable in their mixture. Then, there exists a separating set S with size at most |S| ≤ 3d where d denotes the
maximum in-degree of a node in any component DAG.

We use Lemma 1 to establish the computational complexity of our approach in Section 4.3 and compare it to that of
causal discovery in single DAGs.

Interpreting the results from an interventional learning perspective. By its definition, ∆ can be viewed as the set of
soft intervention targets for which p1 and p2 denote the observational and interventional distributions, respectively. As
characterized in (Hauser & Bühlmann, 2012; Yang et al., 2018; Jaber et al., 2020) and further scrutinized in (Varıcı et al.,
2021), additional information gained by observing samples from an interventional distribution amounts to inferring
the non-intervened parents of an intervened node. This means the unoriented edges adjacent to a node i /∈ ∆ ∪ pa(∆)
in the CPDAG remain unoriented after the intervention. The parallel observation in our mixture model is as follows.
If i /∈ {∆ ∪ pa1(∆) ∪ pa2(∆)}, then for any node j, the edge (i− j) does not fit any of the conditions in Case 1 of
Theorem 3, (10) and (11), implying that (i− j) /∈ EE. Hence, node i is unaffected by mixing p1 and p2, and the edges
adjacent to node i are due to component DAGs. Even though observing pM is strictly less informative than the setting
of interventional causal learning literature where samples from p1 and p2 are observed separately, Theorem 3 reflects
the importance of parents of ∆ in a similar way.

Orienting the edges of the mixture graph. After establishing the conditions for two nodes to be separable and
interpreting them, we look into Objective2 of assigning orientations to the inseparable pairs, i.e., edges of GM, to
represent these conditions. We introduce the following edge notations (→→) and (←←→→) for orienting the undirected
mixture edges EM.

Edge i→→ j: We use this notation to refer to mixture edges in the following cases.

• The edges that point towards j /∈ ∆ in both graphs.
• Emergent edges that point towards j ∈ ∆.

Edge i←←→→ j : We use this notation to refer to the mixture edges in the following cases.

• Emergent edges between i /∈ ∆ and j /∈ ∆.
• Mixture edges between i ∈ ∆ and j ∈ ∆.

We orient the mixture edges EM according to these edge notations and denote the oriented edges by E∗
M. Finally, we

define G∗
M ≜ (V, E∗

M) to denote the oriented version of the mixture graph GM. Figure 3 illustrates an example of
constructing G∗

M.

Inferring orientations. Finally, we address Objective3 by partially recovering edge orientations. To that end, we
investigate what can be inferred about E∗

M via a CI oracle. By its definition in (7), undirected edges EM can be identified
by exhaustively performing CI tests. The definition of a collider carries to our representation, i.e., node k is a collider
on a path if edges on both sides of k have an arrow pointing towards k. Analogous to the (partial) recovery of the
edge orientations of a single DAG, we rely on the separability conditions of unshielded triples of (i, k, j) in GM. The
following lemma summarizes the partial information we can recover about E∗

M.

Lemma 2 Suppose that G1 and G2 are tree-structured DAGs. Consider nodes i /∈ ∆ and j ∈ V that are separated by
set S. Consider node k ∈ V \ S for which (i, k, j) is an unshielded triples in GM. Then, we have the following edge
orientations in E∗

M.

9

Published in Transactions on Machine Learning Research (01/2024)

<latexit sha1_base64="ct5o3ABHlfPJ6xo9i83RnbPkXQw=">AAACxHicjVHfSxtBEN6c1dpYf/axL0uDYEHCnYj1UdG2PpRiwaiQC2FuM5cs2ds7dmfFcKR/Rl9b+l/1v+leEkqT+ODAwsf3zXwzs5MUSloKwz+1YOXF6trL9Vf1jdebW9s7u3u3NndGYEvkKjf3CVhUUmOLJCm8LwxClii8S4YXlX73gMbKXN/QqMBOBn0tUymAPBXHGdAgScuP427U3WmEzXASfBlEM9Bgs7ju7tZ+x71cuAw1CQXWtqOwoE4JhqRQOK7HzmIBYgh9bHuoIUPbKSdDj/m+Z3o8zY1/mviE/b+ihMzaUZb4zGpIu6hV5FNa21F62imlLhyhFtNGqVOccl79AO9Jg4LUyAMQRvpZuRiAAUH+n+pzbSbmBYq5VcpHp6XIe7jAKnokA+P6fmyRMpC62qu8QvWAvgfwr+jwn+p9K/ngUvYl2cMv/hz68LNBHL5fKpnzOzcS1LNsppn+qtHiDZfB7VEzOmkefztunB3N7rvO3rJ37IBF7AM7Y1fsmrWYYAX7wX6yX8GnQAU2cNPUoDarecPmIvj+Fw4e4FU=</latexit>

E1
<latexit sha1_base64="Bq3VlfF6NhwJIGrMXDfhSr5W4SE=">AAACxHicjVFRSxtBEN5crbVpa7V97MtiECxIuAvS9tHS1vpQRMGokAthbjMXl+ztHbuzYjjiz/BV8V/133QvCWISHzqw8PF9M9/M7CSFkpbC8G8teLHycvXV2uv6m7fv1t9vbH44s7kzAtsiV7m5SMCikhrbJEnhRWEQskTheTL8UennV2iszPUpjQrsZjDQMpUCyFNxnAFdJmn5a9xr9TYaYTOcBF8G0Qw02CyOe5u1h7ifC5ehJqHA2k4UFtQtwZAUCsf12FksQAxhgB0PNWRou+Vk6DHf9kyfp7nxTxOfsE8rSsisHWWJz6yGtItaRT6ndRyl37ql1IUj1GLaKHWKU86rH+B9aVCQGnkAwkg/KxeXYECQ/6f6XJuJeYFibpXy2mkp8j4usIquycC4vh1bpAykrvYqD1Fdoe8B/AgdPqret5J3fsqBJLv7x59D7/42iMPPSyVzft+NBPVfNtNMf9Vo8YbL4KzVjL409072Gvut2X3X2Ce2xXZYxL6yfXbIjlmbCVawW3bH7oODQAU2cNPUoDar+cjmIrj5BxBz4FY=</latexit>

E2
<latexit sha1_base64="VCiS+8dGgFCynvk62PcbAI67owM=">AAAC2HicjVFRaxNBEN6cVmusmuqjIEtDoUIJd6FoH1uq2AeRFpq2NBfC3GYuXbK3d+zOhYQj0AdBfPUn+Oir/hn/jXtJKE3iQwcWPr5v5puZnShT0pLv/614Dx6uPXq8/qT6dOPZ8xe1zZfnNs2NwJZIVWouI7CopMYWSVJ4mRmEJFJ4EQ2OSv1iiMbKVJ/ROMNOAn0tYymAHNWtvQkToOsoLj5OugEPBWT8DtPs1up+w58GXwXBHNTZPE66m5WfYS8VeYKahAJr24GfUacAQ1IonFTD3GIGYgB9bDuoIUHbKaaLTPi2Y3o8To17mviUvVtRQGLtOIlcZjmkXdZK8n9aO6d4v1NIneWEWswaxbnilPLyV3hPGhSkxg6AMNLNysU1GBDk/q660GZqnqFYWKUY5VqKtIdLrKIRGZhUt0OLlIDU5V7FMaohuh7Av2COt6rzLeWdD7Ivye5+difSu58M4uDtSsmC36GRoO5lM8t0Vw2Wb7gKzpuN4F1j73SvftCc33edvWZbbIcF7D07YMfshLWYYF/ZL/ab/fGuvBvvm/d9lupV5jWv2EJ4P/4BzNvnpg==</latexit>

E1 \ E2
<latexit sha1_base64="iCjICzsQ8aC/9OO9pwyBCcBoxPE=">AAACzHicjVFNaxsxEJW3X6n75aTHXkRNIIVgdkNoe0xpS3NoQwp1EvAaMyvPOsKSdpFmg43Ya39GD720f6n/plrblNruoQOCx3szb2Y0Wamkozj+1Ypu3b5z997O/faDh48eP+ns7l24orIC+6JQhb3KwKGSBvskSeFVaRF0pvAym75t9MsbtE4W5gvNSxxqmBiZSwEUqFFnL9VA11nu39cjn1rNP9WjTjfuxYvg2yBZgS5bxflot/U9HRei0mhIKHBukMQlDT1YkkJh3U4rhyWIKUxwEKABjW7oF8PXfD8wY54XNjxDfMH+XeFBOzfXWchsRnWbWkP+SxtUlL8eemnKitCIZaO8UpwK3vwEH0uLgtQ8ABBWhlm5uAYLgsJ/tdfaLMxLFGur+FllpCjGuMEqmpGFur2fOiQN0jR7+VNUNxh6AD/DCv+owbeRD97JiSR3+DGcxRx+sIjTF1sla35vrAT1XzbLzHDVZPOG2+DiqJe87B1/Pu6eHK3uu8OesefsgCXsFTthp+yc9ZlgM/aN/WA/o7OIIh/Vy9Sotap5ytYi+vobUmnjMQ==</latexit>

EM

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(a) G1

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1

<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3

<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(b) G2

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1
<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3
<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(c) GM

<latexit sha1_base64="KNioJ/sWib5kzWFrKmvyqxdqVkQ=">AAACuXicjVFRSxtBEN6crdpoNbGPfVkaBAUJdyKt4EvEgj6IGGiikASZ20ySNXt7x+5cMBz5Bb62f8B/5b9xLwmlSfrgwMLH9818M7MTJkpa8v3Xgrf24eP6xuan4tb2553dUnmvaePUCGyIWMXmPgSLSmpskCSF94lBiEKFd+HwItfvRmisjPUvGifYiaCvZU8KIEfVg4dSxa/60+CrIJiDCpvH7UO58NLuxiKNUJNQYG0r8BPqZGBICoWTYju1mIAYQh9bDmqI0Hay6aQTvu+YLu/Fxj1NfMr+W5FBZO04Cl1mBDSwy1pO/k9rpdQ77WRSJymhFrNGvVRxinm+Nu9Kg4LU2AEQRrpZuRiAAUHuc4oLbabmCYqFVbKnVEsRd3GJVfREBibF/bZFikDqfK/sCtUIXQ/gN5jiX9X55vLBT9mXZI+u3Q300aVBHB6ulCz4nRsJ6l02s0x31WD5hqugeVwNvldP6ieV2vH8vpvsK/vGDljAfrAau2K3rMEEQ/bMfrM/3pkH3sB7nKV6hXnNF7YQnn0DCI7bfQ==</latexit>

1
<latexit sha1_base64="pecWCJildrHVdhbAMoSawdIoZ5A=">AAACuXicjVFNSyNBEO2MuqtZXb+OXhqDoCBhJgRd8KIo6EFEwaiQBKnpVJI2PT1Dd40YhvwCr/oH/Ff7b7YnCWISD1vQ8Hiv6lVVV5goacn3/xa8ufmFHz8Xl4q/lld+r66tb9zZODUCayJWsXkIwaKSGmskSeFDYhCiUOF92DvN9ftnNFbG+pb6CTYj6GjZlgLIUTeVx7WSX/aHwWdBMAYlNo7rx/XCR6MVizRCTUKBtfXAT6iZgSEpFA6KjdRiAqIHHaw7qCFC28yGkw74jmNavB0b9zTxIfu1IoPI2n4UuswIqGuntZz8Tqun1P7TzKROUkItRo3aqeIU83xt3pIGBam+AyCMdLNy0QUDgtznFCfaDM0TFBOrZC+pliJu4RSr6IUMDIo7DYsUgdT5XtkFqmd0PYBfYYqfqvPN5d0z2ZFk9y/dDfT+uUHs7c2UTPidGAnqv2xGme6qwfQNZ8FdpRwclKs31dJxZXzfRbbFttkuC9ghO2YX7JrVmGDIXtkbe/eOPPC63tMo1SuMazbZRHj2Hwrj234=</latexit>

2

<latexit sha1_base64="KkNs6T3iXH/7Jwuf1K7bPD75nK4=">AAACuXicjVHfSxtBEN5cbWvTH2p99GUxBFKQcKfSFvpiaUEfRBRMFJIQ5jaTZM3e3rE7J4Yjf0Ff7T/gf+V/073LISbxoQMLH983883MTpgoacn3Hyveq7XXb96uv6u+//Dx08bm1ue2jVMjsCViFZvrECwqqbFFkhReJwYhChVehZNfuX51i8bKWF/SNMFeBCMth1IAOerioL9Z85t+EXwVBCWosTLO+1uVh+4gFmmEmoQCazuBn1AvA0NSKJxVu6nFBMQERthxUEOEtpcVk8543TEDPoyNe5p4wT6vyCCydhqFLjMCGttlLSdf0jopDb/3MqmTlFCLeaNhqjjFPF+bD6RBQWrqAAgj3axcjMGAIPc51YU2hXmCYmGV7C7VUsQDXGIV3ZGBWbXetUgRSJ3vlZ2gukXXA/gZpvikOt9cbvyWI0l279TdQO8dG8TJl5WSBb+fRoL6L5t5prtqsHzDVdDebwZfm4cXh7Wj/fK+62yH7bIGC9g3dsRO2DlrMcGQ/WH37K/3wwNv7N3MU71KWbPNFsKz/wANONt/</latexit>

3
<latexit sha1_base64="6nQzhJC9Npz6VYjvX2LtnvEx2Vs=">AAACtXicjVHbSiNBEO2M1x3vvu5LYxAUJMxIcAVfFAV9WETBqJAEqelUkiY9PbPdNWIY8gW+6g/sX+3fbE8SxCQ+WNBwOKfqVFVXlCppKQj+lby5+YXFpeUf/srq2vrGpr91b5PMCKyJRCXmMQKLSmqskSSFj6lBiCOFD1HvvNAfntFYmeg76qfYjKGjZVsKIEfdVp82y0ElGAafBeEYlNk4bp62Sn8brURkMWoSCqyth0FKzRwMSaFw4DcyiymIHnSw7qCGGG0zH0464LuOafF2YtzTxIfs54ocYmv7ceQyY6CundYK8iutnlH7uJlLnWaEWowatTPFKeHF2rwlDQpSfQdAGOlm5aILBgS5z/En2gzNUxQTq+QvmZYiaeEUq+iFDAz83YZFikHqYq/8CtUzuh7ArzHDD9X5FvLehexIsge/3Q30waVB7O3PlEz4nRkJ6ls2o0x31XD6hrPg/rASHlWq5dPD8XWX2U+2w/ZYyH6xU3bFbliNCYbslb2xd+/EA687SvRK44ptNhHen/9mutqE</latexit>

4

(d) G∗
M

Figure 3: An example of (a)-(b) Component DAGs; (c) associated undirected mixture graph; (d) oriented mixture graph.

1. If j /∈ ∆, k ∈ ∆, then we have i→→ k ←← j.

2. If j ∈ ∆, k ∈ ∆, then we have i→→ k ←←→→ j.

3. If j /∈ ∆, k /∈ ∆, then we have i→→ k ←← j or i←←→→ k ←←→→ j.

4. If j ∈ ∆, k /∈ ∆, then we have i→→ k ←← j or i←←→→ k ←← j or i←←→→ k →→ j.

Connections to v-structures. Strobl (2023) has provided an example of a DAGs’ mixture with additional latent nodes
where v-structures cannot be identified from a CI oracle alone. We make a similar observation in Case 4 of Lemma 2
that some v-structures in the mixture cannot be inferred without additional information (for instance, i←←→→ k ←← j and
i←←→→ k →→ j are indistinguishable). On the other hand, Case 1 and 2 of Lemma 2 show that if we know ∆, we can
orient edges of an unshielded triple upon k ∈ ∆. Hence, (partial) knowledge of the set ∆, which may be available in
certain applications, allows us to infer important information about the cause-effect relationships in a DAGs’ mixture.

4.3 Algorithmic Perspective

We leverage our theoretical results to devise an algorithm for learning the mixture graph. The details of the algorithm
are as follows. Algorithm 1 takes samples from the mixture distribution pM as the main input and ∆̂ ⊆ ∆ as an optional
input when it is available, which accounts for the (possibly partial) knowledge of the nodes with varying conditional
distributions. We assume access to a CI oracle to perform conditional independence tests. The algorithm has two main
stages:

Stage 1: In Stage 1, we start with a complete graph, then consider every node pair and remove the edge between them
if there exists a conditioning set that makes the random variables corresponding to the node pair independent. We
record the separating sets for each removed edge to use in the orientation phase. Note that this skeleton learning
phase applies to a mixture of arbitrary graphs.

Stage 2: If the component DAGs are known to have tree structures, we continue with Stage 2 and use the additional
input ∆̂ to partially orient the skeleton of the mixture graph. As discussed in Section 4, set ∆ plays a crucial role in
the separability of nodes i, j ∈ V in mixture distribution and the orientation of the inseparable pairs (i− j) ∈ EM.
Therefore, we first orient the edges between i ∈ ∆̂ and j ∈ ∆̂ nodes. Next, we consider the unshielded triples in
the skeleton such that the connecting node of the triple is not contained in the separating set of the non-adjacent
nodes of the triple. While orienting the edges, a circle on one end denotes the ambiguity about the orientation, e.g.,
we use →→◦ to denote that the edge can be either→→ or←←→→. We follow this convention to orient as many edges as
possible. If we have partial knowledge of ∆, e.g., we are given ∆̂ ⊆ ∆, we only orient one end of the edges that
point towards nodes in ∆ in an unshielded triple. However, if we know that given ∆̂ is exactly equal to ∆, we can
orient more edges by considering each unshielded triple with respect to its nodes’ inclusion in ∆.

In the rest of this section, we connect the outputs of Algorithm 1 to the theoretical results presented before. The
following lemma states the implications of an edge in the output of Stage 1 and is essentially equivalent to Theorem 2.

Lemma 3 (Stage 1 Output) Assume that the mixture faithfulness assumption holds. If (i − j) ∈ EM at the end of
Stage 1 of Algorithm 1, then there is an edge between i and j in at least one of the component DAGs, and otherwise one
of the following statements is true:

10

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1

1: Input: Samples from mixture distribution pM, ∆̂

2: Stage 1: Skeleton of GM = (V, EM)
3: Form complete undirected graph: EM ← {(i− j) : i ∈ V, j ∈ V}
4: for all i, j ∈ V do
5: for all S ∈ V \ {i, j} do ▷ for trees, only for the sets: |S| ≤ 3d
6: if Xi ⊥⊥ Xj | XS then
7: Remove (i− j) edge: EM ← EM \ (i− j), and SepSet(i, j)← S.
8: break
9: end if

10: end for
11: end for

12: Stage 2: Orientation rules for a mixture of trees
13: Denote all pairs (i− j) ∈ EM as i −◦−◦ j: ẼM ← {i −◦−◦ j : (i− j) ∈ EM}
14: for all i, j ∈ ∆̂ do
15: Orient i←←→→ j in ẼM
16: end for
17: Unshielded triples with non-separator connectors:

U ← {(i, k, j) : (i− k) ∈ EM, (j − k) ∈ EM, (i− j) /∈ EM, k /∈ SepSet(i, j)}

18: if we have ∆̂ = ∆ then
19: for all (i, k, j) ∈ U do
20: if k ∈ ∆, i /∈ ∆, j /∈ ∆ then
21: Orient i→→ k ←← j in ẼM
22: else if k ∈ ∆, i /∈ ∆, j ∈ ∆ then
23: Orient i→→ k ←←→→ j in ẼM
24: else if k ∈ ∆, i ∈ ∆, j /∈ ∆ then
25: Orient i←←→→ k ←← j in ẼM
26: else if k /∈ ∆, i /∈ ∆, j /∈ ∆ then
27: Orient i →→◦ k←←◦j in ẼM
28: else if k /∈ ∆, i /∈ ∆, j ∈ ∆ then
29: Orient i →→◦ k −◦−◦ j in ẼM
30: else if k /∈ ∆, i ∈ ∆, j /∈ ∆ then
31: Orient i −◦−◦ k←←◦j in ẼM
32: end if
33: end for
34: else if we have ∆̂ ⊂ ∆ then
35: for all (i, k, j) ∈ U do
36: if k ∈ ∆̂ then
37: Orient i →→◦ k←←◦j in ẼM
38: end if
39: end for
40: end if
41: return EM, ẼM

1. i ∈ ∆ and j ∈ ∆.

2. i /∈ ∆ and j /∈ ∆, and component DAGs have ∆-through paths between i and j in opposite directions.

3. i /∈ ∆ and j ∈ ∆, and at least one of the component DAGs contains a ∆-through path from i to j.

11

Published in Transactions on Machine Learning Research (01/2024)

Next, we provide the separability necessary and sufficient conditions for the output of Stage 1 when the component
DAGs have tree structures. These conditions are equivalent to those for separability given in Theorem 3.

Lemma 4 (Separability in Tree Structures) Suppose that G1 and G2 are tree-structured DAGs. Consider the skeleton
EM at the end of Stage 1 of Algorithm 1 and assume that mixture faithfulness holds. If there is an edge between i and j
in at least one of the component DAGs, then (i− j) ∈ EM. Otherwise, we have

Case 1) i ∈ ∆ and j ∈ ∆: (i− j) is in EM.
Case 2) i /∈ ∆ and j /∈ ∆: (i− j) is in EM if and only if component DAGs have ∆-through paths between i and j in
opposite directions such that the children of i and j on the paths are in ∆.
Case 3) i /∈ ∆ and j ∈ ∆: (i− j) is in EM if and only if at least one component DAG has a ∆-through path from i to
j such that the child of i on the path is in ∆.

Finally, we consider the edge orientations in Stage 2. In Section 4.2, we defined edge orientations {→→,←←→→} and
constructed oriented mixture graph G∗

M = (V, E∗
M) accordingly. Then, in Lemma 2, we have established what partial

orientations can be learned from unshielded triples. Under mixture faithfulness, Stage 2 of Algorithm 1 follows
Lemma 2 to construct partially oriented edge set ẼM.

Computational complexity We note that for general graphs, Theorem 2 provides only sufficient conditions for the
separability of two nodes without establishing matching worst-case necessary conditions. Therefore, for general graphs,
Stage 1 has O(n2 · 2n) exponential complexity. On the contrary, for a mixture of trees, Lemma 1 shows that checking
all sets S of size at most 3d is sufficient to identify all mixture edges. This procedure is repeated for

(
n
2
)

node pairs.
Note that Stage 2 directly reads off the unshielded triples and saved separating sets for all separable node pairs from
Stage 1 output. Therefore, the total complexity of Algorithm 1 for a mixture of tree-structured DAGs is O(n3d+2). We
also recall that the complexity of the well-known PC algorithm (Spirtes et al., 2000) for structure learning of a general
DAG is O(nd+2). The difficulty in our setting comes from having to block all paths between nodes i and j across
multiple graphs, which may contain causal relationships in opposite directions.

5 Empirical Evaluations

We evaluate the performance of Algorithm 1 for estimating the skeleton of the mixture graph and partially orienting the
recovered edges using synthetic data.

Experimental setup. To generate G1 and G2, we use Erdős-Rényi model with G(n, p) with density p = 2/n for
n ∈ {6, 8} for each of the component DAGs. We repeat sampling graphs from Erdős-Rényi model until both G1 and
G2 have tree structures. Note that the component DAGs are generated independently and do not necessarily share the
same topological order. For the causal relationships, we follow linear structural equation models (SEM) with additive
Gaussian noise for both component DAGs. Edge weights are sampled uniformly in ±[0.25, 2], and shared directed
edges between two graphs are assigned the same weights. The mean of the Gaussian noise for each node is sampled
uniformly in [−2, 2] with a standard deviation of 1 and set to be equal in both graphs. Note that this parameterization
implies that ∆ consists of the nodes with varying parent sets across two graphs. We use a partial correlation test as
a conditional independence test routine for simplicity even though the true distribution pM is a mixture of Gaussian
distributions. The threshold for the p-value of the CI test is set to α = 0.1. For each case, we run the algorithm
with s ∈ {1e3, 3e3, 1e4, 3e4, 5e4, 1e5} number of samples from each component DAG. We repeat this experimental
procedure for 500 randomly generated G1 and G2 tree pairs and report the average results. We investigate the effects of
the choice of CI test and varying mixing rate of two component distributions in Appendix C.

Skeleton recovery. Figure 4 illustrates the precision and recall rates for recovering the skeleton EM with varying
numbers of samples for n = 6 and n = 8. The observations are shared between two graph sizes, with the performance
at smaller graphs being higher, as expected. The first observation is that we have very high precision rates even with
as few as s = 1000 samples (shown by the blue curves). On the other hand, high recall rates become possible given
a large enough number of samples (shown by the orange curves). Recall that mixture edges consist of two disjoint
sets: edges that exist in at least one component DAG (i.e., union edges) and emergent edges. We further look into
the decomposition of the overall recall rate into the recall rate of union and emergent edges (green and red curves,

12

Published in Transactions on Machine Learning Research (01/2024)

103 104 105

Number of samples from each component DAG

0.6

0.7

0.8

0.9

1.0
n=6

skel-precision
skel-recall
union-edges-recall
emergent-edges-recall

(a) Skeleton recovery results for n = 6

103 104 105

Number of samples from each component DAG

0.4

0.5

0.6

0.7

0.8

0.9

1.0
n=8

skel-precision
skel-recall
union-edges-recall
emergent-edges-recall

(b) Skeleton recovery results for n = 8

Figure 4: Skeleton recovery rates

103 104 105

Number of samples from each component DAG

0.70

0.75

0.80

0.85

0.90

n=6

orientation-precision
orientation-recall
orientation-F1

(a) Orientation recovery results for n = 6

103 104 105

Number of samples from each component DAG

0.65

0.70

0.75

0.80

0.85

0.90

0.95
n=8

orientation-precision
orientation-recall
orientation-F1

(b) Orientation recovery results for n = 8

Figure 5: Orientation recovery rates

respectively). The main observation is that emergent edges require more samples than union edges to achieve the same
recall rates. This can be explained by the dependence of the two nodes of an emergent edge is only due to the mixing of
two distributions. In contrast, a union edge denotes a strong dependence between two nodes in at least one component
DAG, which comprises half of the observed samples. It is, however, noteworthy that the gap between the recall rates of
union and emergent edges narrows as the number of samples increases.

Orientation recovery. For recovering the orientation of the edges, we take ∆̂ = ∆ as input for evaluating our results
for diverse combinations of node pairs. In this case, (i←←→→ j) orientations for i ∈ ∆ and j ∈ ∆ are already known by
the input ∆. Hence, we report the results for the recovery of non-trivial orientations of→→ and →→◦ . Figure 5 plots
the precision, recall, and F1 rates for recovering the oriented edges ẼM with varying numbers of samples for n = 6
and n = 8. The first observation is similar to skeleton recovery in the sense that precision rates are higher than recall.
We note that emergent edges had relatively lower recall rates in Figure 4. Excluding the emergent edges between two
nodes in ∆ for orientation recovery (due to already being oriented given ∆) explains the higher recall rates in Figure 5
compared to Figure 4. We also see that precision rates in Figure 5 are slightly lower than the ones in Figure 4. This is
due to the fact that separating set decisions in Stage 1 of Algorithm 1 may contain errors even if the undirected edge of
the skeleton is correctly recovered.

6 Discussion

Summary. In this paper, we have taken the challenge of causal discovery in a mixture of DAGs. We focused on
analyzing the key node pairs that are inseparable in the mixture model but separable in individual DAGs. In our analysis,
we have provided sufficient conditions for separating a pair of nodes for a mixture of arbitrary DAGs. We have further
improved these conditions and have shown them to be necessary for a mixture of tree-structured DAGs. We have also
formalized a novel graphical characterization to represent the new causal relationships that arise in the DAGs’ mixture
and established results for partially recovering the orientations of the graph’s edges.

13

Published in Transactions on Machine Learning Research (01/2024)

Limitations. The main limitation of this paper is some of our results (Section 4.2) are exclusive to a mixture of
tree-structured DAGs. A practical limitation can be the computational burden of checking every possible separating set
to determine if two nodes are inseparable in the mixture.

Future work. This paper formalizes the separability framework for the broad problem of causal discovery of a mixture
of DAGs. Extending the theoretical results and graphical representations for a mixture of trees to a mixture of arbitrary
graphs is an important future direction. Developing efficient algorithms for identifying the inseparable node pairs
(similar to the PC algorithm for structure learning of a single DAG) is important to accommodate a mixture of DAGs
with a large number of nodes in practice. Finally, generalizing the mixture data model to a block mixture model can
provide essential additional information for the causal discovery of the mixture graph. For instance, in a dynamical
system in which there is a gradual, smooth transition between the component models, one can perform change-point
detection and dynamic model tracking and estimating. We note that such a setting would also require developing a
counterpart for the graphical models for the new mixture distribution while still preserving Markov properties.

Acknowledgements

This work was supported by the Rensselaer-IBM AI Research Collaboration (http://airc.rpi.edu), part of the IBM AI
Horizons Network (http://ibm.biz/AIHorizons).

References
Silvia Acid and Luis M de Campos. Approximations of causal networks by polytrees: An empirical study. In Proc.

International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems,
pp. 149–158, Paris, France, July 1994.

Carlos Améndola, Philipp Dettling, Mathias Drton, Federica Onori, and Jun Wu. Structure learning for cyclic linear
causal models. In Proc. Conference on Uncertainty in Artificial Intelligence, virtual, 2020.

Stephan Bongers, Patrick Forré, Jonas Peters, and Joris M Mooij. Foundations of structural causal models with cycles
and latent variables. Annals of Statistics, 49(5):2885–2915, 2021.

Kirsten Bulteel, Francis Tuerlinckx, Annette Brose, and Eva Ceulemans. Clustering vector autoregressive models:
Capturing qualitative differences in within-person dynamics. Frontiers in Psychology, 7:1540, 2016.

Wei Chen, Yunjin Wu, Ruichu Cai, Yueguo Chen, and Zhifeng Hao. CCSL: A causal structure learning method from
multiple unknown environments. arXiv:2111.09666, 2021.

Yanxi Chen and H. Vincent Poor. Learning mixtures of linear dynamical systems. In Proc. International Conference on
Machine Learning, Baltimore, Maryland, July 2022.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research,
3(11):507–554, 2002.

Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. Learning high-dimensional
directed acyclic graphs with latent and selection variables. Annals of Statistics, 40(1):294–321, 2012.

Patrick Forré and Joris M Mooij. Markov properties for graphical models with cycles and latent variables.
arXiv:1710.08775, 2017.

AmirEmad Ghassami, Alan Yang, Negar Kiyavash, and Kun Zhang. Characterizing distribution equivalence and
structure learning for cyclic and acyclic directed graphs. In Proc. International Conference on Machine Learning,
virtual, 2020.

Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and Alexander J. Smola. A kernel
statistical test of independence. In Proc. Advances in Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 2007.

Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional Markov equivalence classes
of directed acyclic graphs. Journal of Machine Learning Research, 13(1):2409–2464, 2012.

14

http://airc.rpi.edu
http://ibm.biz/AIHorizons

Published in Transactions on Machine Learning Research (01/2024)

Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D Ramsey, Ruben Sanchez-Romero, Clark Glymour, and Bernhard
Schölkopf. Causal discovery from heterogeneous/nonstationary data. Journal of Machine Learning Research, 21
(89):1–53, 2020.

Amin Jaber, Murat Kocaoglu, Karthikeyan Shanmugam, and Elias Bareinboim. Causal discovery from soft interventions
with unknown targets: Characterization and learning. In Proc. Advances in Neural Information Processing Systems,
virtual, December 2020.

Panagiota I Kontou, Athanasia Pavlopoulou, Niki L Dimou, Georgios A Pavlopoulos, and Pantelis G Bagos. Network
analysis of genes and their association with diseases. Gene, 590(1):68–78, 2016.

Harvey F. Lodish. Molecular Cell Biology. W.H. Freeman, New York, NY, Eighth edition, 2016.

Marina Meila and Michael I Jordan. Learning with mixtures of trees. Journal of Machine Learning Research, 1:1–48,
2000.

Joris M Mooij and Tom Claassen. Constraint-based causal discovery using partial ancestral graphs in the presence of
cycles. In Proc. Conference on Uncertainty in Artificial Intelligence, virtual, August 2020.

Joris M. Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple contexts. Journal of Machine
Learning Research, 21(99):1–108, 2020.

Preetam Nandy, Alain Hauser, and Marloes H Maathuis. High-dimensional consistency in score-based and hybrid
structure learning. Annals of Statistics, 46(6A):3151–3183, 2018.

Jane Neumann, Peter T Fox, Robert Turner, and Gabriele Lohmann. Learning partially directed functional networks
from meta-analysis imaging data. Neuroimage, 49(2):1372–1384, 2010.

Judea Pearl. Causality. Cambridge University Press, Cambridge, UK, 2009.

Yasaman Pirahanchi, Fadi Toro, and Ishwarlal Jialal. Physiology, thyroid stimulating hormone. StatPearls [Internet],
January 2023.

F Ann Ran, Patrick D Hsu, Jason Wright, Vineeta Agarwala, David A Scott, and Feng Zhang. Genome engineering
using the crispr-cas9 system. Nature Protocols, 8(11):2281–2308, 2013.

Brett M Reid, Jennifer B Permuth, and Thomas A Sellers. Epidemiology of ovarian cancer: A review. Cancer Biology
& Medicine, 14(1):9, 2017.

Basil Saeed, Snigdha Panigrahi, and Caroline Uhler. Causal structure discovery from distributions arising from mixtures
of dags. In Proc. International Conference on Machine Learning, virtual, July 2020.

Rajen D. Shah and Jonas Peters. The hardness of conditional independence testing and the generalised covariance
measure. Annals of Statistics, 48(3):1514–1538, 2020.

Peter Spirtes. Directed cyclic graphical representations of feedback models. In Proc. Conference on Uncertainty in
Artificial Intelligence, Montreal, Quebec, Canada, August 1995.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, Prediction, and Search. MIT
Press, Cambridge, MA, 2000.

Eric V. Strobl. Causal discovery with a mixture of dags. Machine Learning, 112(11):4201–4225, 2023.

Bo Thiesson, Christopher Meek, David Maxwell Chickering, and David Heckerman. Learning mixtures of Bayesian
networks. Cooper & Moral, 1998.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing Bayesian network structure
learning algorithm. Machine Learning, 65(1):31–78, 2006.

Burak Varıcı, Karthikeyan Shanmugam, Prasanna Sattigeri, and Ali Tajer. Scalable intervention target estimation in
linear models. In Proc. Advances in Neural Information Processing Systems, December 2021.

15

Published in Transactions on Machine Learning Research (01/2024)

Thomas Verma and Judea Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation.
In Proc. Conference on Uncertainty in Artificial Intelligence, Stanford, CA, July 1992.

John Winn. Causality with gates. In Proc. International Conference on Artificial Intelligence and Statistics, La Palma,
Canary Islands, Spain, April 2012.

Karren Yang, Abigail Katcoff, and Caroline Uhler. Characterizing and learning equivalence classes of causal DAGs
under interventions. In Proc. International Conference on Machine Learning, Stockholm, Sweden, July 2018.

Kun Zhang and Madelyn RK Glymour. Unmixing for causal inference: Thoughts on Mccaffrey and Danks. The British
Journal for the Philosophy of Science, 2020.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional independence test and
application in causal discovery. In Proc. Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, July
2011.

Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, and Bernhard Schölkopf. Causal discovery from nonstation-
ary/heterogeneous data: Skeleton estimation and orientation determination. In Proc. International Joint Conference
on Artificial Intelligence, Melbourne, Australia, August 2017.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous optimization for
structure learning. In Proc. Advances in Neural Information Processing Systems, Montréal, Canada, December 2018.

16

Published in Transactions on Machine Learning Research (01/2024)

A Proofs of the Main Results

A.1 Invariant conditional distributions and parent sets

The following result states that if a node i has invariant causal mechanisms across two DAGs, i.e., invariant distributions
conditioned on its respective parents in G1 and G2, then the parent sets must be equal.

Lemma 5 If i /∈ ∆, then we have pa1(i) = pa2(i).

Proof Consider a node i /∈ ∆. We prove that pa1(i) = pa2(i) by contradiction. Suppose the contrary and assume
pa1(i) ̸= pa2(i). Without loss of generality, let pa2(i) \ pa1(i) ̸= ∅, and consider j ∈ pa2(i) \ pa1(i). Let
S ≜ pa2(i) \ {j}. Since i /∈ ∆, the conditional probability distributions of i given its parents are the same, i.e.,

p1(xi | xpa1(i)) = p2(xi | xpa2(i)) = p2(xi | xS , xj) . (12)

By definition of a causal parent, there exist realizations XS = θ∗, Xj = a∗ and Xj = b∗ such that

p2(Xi = xi | XS = θ∗, Xj = a∗) ̸= p2(Xi = xi | XS = θ∗, Xj = b∗) . (13)

Otherwise, Xj has no effect on Xi conditioned on set S, and it is not a parent of i in G2. Now consider a realization of
Xpa1(i) = φ∗ for which the values of Xpa1(i)∩pa2(i) are determined by θ∗. Then, we have

p1(Xi = xi | Xpa1(i) = φ∗) = p2(Xi = xi | XS = θ∗, Xj) . (14)

Note that the left-hand side of (14) is independent of Xj . However, the right-hand side of (14) takes distinct values for
realizations Xj = a∗ and Xj = b∗, which is a contradiction. Therefore, pa2(i) \ pa1(i) = ∅ and by similar line of
argument, we have pa1(i) \ pa2(i) = ∅. This concludes the proof that if i /∈ ∆, then pa1(i) = pa2(i).

A.2 Proof of Theorem 2

First, we provide a counterpart of Theorem 2, which states the necessary conditions for nodes i and j being inseparable
(forming an emergent edge). The proof of Theorem 2 will readily follow from this result.

Theorem 4 Consider nodes i, j ∈ V such that i and j are not adjacent in either component DAG, i.e., (i− j) /∈ EU.

Case 1) i ∈ ∆ and j ∈ ∆: i and j are always inseparable, i.e., (i− j) is an emergent edge.

Case 2) i /∈ ∆ and j /∈ ∆: If i and j are inseparable, then the component DAGs have ∆-through paths between i and
j in opposite directions. That is, one DAG contains a ∆-through path from i to j and the other one contains a
∆-through path from j to i.

Case 3) i /∈ ∆ and j ∈ ∆: If i and j are inseparable, then at least one component DAG contains a ∆-through path
from i to j.

Proof The first case is trivial as inseparability of the nodes i ∈ ∆ and j ∈ ∆ is due to the path i
ℓ← y

ℓ→ j in composite
DAG. We prove the non-trivial cases as follows.

• Case 2: For i /∈ ∆ and j /∈ ∆, we have pa1(i) = pa2(i) and pa1(j) = pa2(j) by Lemma 5. Let the pair (i− j) be
inseparable and consider the set S = pa(i) ∪ pa(j). Then, there exists an open path π between ī and j̄ given S̄ on
composite DAG GC. Since pa(i) is given, any path that starts with i

ℓ← is blocked for ℓ ∈ {1, 2}. Without loss of
generality, let π start with an edge i

1→. We investigate two possibilities for π.

– Let y /∈ π. Then, π must be of the form i
1→ · · · 1← j. Without loss of generality, suppose that i /∈ de1(j).

However, there exists a collider k on π such that k ∈ de1(j). Then, for π to be open, a node z ∈ de+
1 (k),

which is also a node in de1(j), must be given in S. However, z /∈ pa(i) since i /∈ de1(j) and z /∈ pa(j) due to
acyclicity. Therefore, the case of y /∈ π is not possible.

17

Published in Transactions on Machine Learning Research (01/2024)

– Let y ∈ π. Without loss of generality, suppose that π contains i
1
⇝ k

1← . . . y. For π to be open, a z ∈ de+
1 (k)

must be given in S = pa(i) ∪ pa(j), which implies that k ∈ an1(j). Subsequently, i
1
⇝ j. Repeating the same

line of arguments, we find that j
2
⇝ i. Finally, note that if none of the nodes on the path i

1
⇝ j is not contained in

∆, then we have the same path in G2 as i
2
⇝ j, which contradicts with j

2
⇝ i. Therefore, there exist ∆-through

paths between i and j in opposite directions in the two component DAGs.

• Case 3: Since i /∈ ∆, we have pa1(i) = pa2(i). Let (i− j) be inseparable and consider the set S = pa(i). Then,
there exists an open path π between ī and j̄ given S̄ on composite DAG GC. Since pa(i) is given, any path that

starts with i
ℓ← is blocked, and π necessarily starts with i

ℓ→ edge. If π contains a collider k such that i
ℓ
⇝ k, then

S = pa(i) must contain a node from de+
ℓ (k) for π to be open. This contradicts with k ∈ deℓ(i). Hence, there is no

collider on π and we have i
ℓ
⇝ j. Since j ∈ ∆, i

ℓ
⇝ j is a ∆-through path.

Proof of Theorem 2. Case 1 of Theorem 2 is the same as Case 1 of Theorem 4. For a pair of nodes i, j that are not
adjacent in component DAGs, we define the following statements.

P : i and j are separable ,

Q : component DAGs do not have ∆-through paths between i and j in opposite directions
R : neither of the component DAGs contains a ∆-through path from i to j

Then, Case 2 of Theorem 4 shows that if i /∈ ∆ and j /∈ ∆, we have ¬P =⇒ ¬Q. This equivalently means that
Q =⇒ P , which is Case 2 of Theorem 2. Next, Case 3 of Theorem 4 shows that if i /∈ ∆ and j ∈ ∆, we have
¬P =⇒ ¬R. This equivalently means that R =⇒ P , which is Case 3 of Theorem 2, and the proof is completed.

A.3 Proof of Theorem 3

Case 1 is the same as Case 1 of Theorem 2 and is trivial since inseparability of the nodes i ∈ ∆ and j ∈ ∆ is due to the
path i

ℓ← y
ℓ→ j in composite DAG. We prove the non-trivial cases as follows.

• Case 2: i /∈ ∆ and j /∈ ∆. Note that the theorem statement is equivalent to: i and j are inseparable if and only if the
component DAGs have ∆-through paths between i and j in opposite directions such that the children of i and j on
the paths are in ∆. We prove the two directions of this equivalent statement as follows.

– Let there exist ∆-through paths between i and j in opposite directions such that the children of i and j on the
paths are in ∆. Then, without loss of generality, let i

1→ u
1
⇝ j and j

2→ v
2
⇝ i where u, v ∈ ∆. Suppose that

(i− j) is not an emergent edge, and set S separates them. Then, S must contain nodes from de+
1 (u) and de+

2 (v)
to block both ∆-through paths. However, this opens the path i

1→ u
1← y

2→ v
2← j, which contradicts with i

and j being separated. Therefore, i and j are inseparable and (i− j) ∈ EE.

– Let (i − j) be inseparable. By Theorem 4, without loss of generality, we have i
1→ u

1
⇝ j and j

2→ v
2
⇝ i.

We prove that u ∈ ∆ by contradiction. Suppose the contrary and let u /∈ ∆. Consider S = pa(i) ∪ pa(j) ∪
pa+(u) ∪ \{i}. Let π be an open path given S. Since pa(i) and pa(j) are given, π starts with i

ℓ→ edge and is

not a causal path from i to j. Then, π must contain a collider k ∈ deℓ(i), i.e., π contains i
ℓ
⇝ k

ℓ←. For π to be
open, some z ∈ deℓ(k) must be in S. Due to acyclicity, z /∈ pa(i). Recall that Gℓ is a tree, and there can be only

one directed path from i to j in Gℓ. Then, if z ∈ pa(j), having i
ℓ→ u

ℓ
⇝ j and i

ℓ
⇝ k

ℓ
⇝ z

ℓ→ j imply that u

is on π and blocks π, which contradicts with π being open. If z ∈ pa+(u), then i
ℓ
⇝ z and i

ℓ→ u imply that
z = u. In this case, π becomes i

ℓ→ u
ℓ←, which is blocked by pa(u), and π is not open. We find a contradiction

in each possible configuration for u /∈ ∆. Therefore, we find that u ∈ ∆. By following similar line arguments,
we can find that v ∈ ∆ as well, which concludes the proof of this case.

• Case 3: i /∈ ∆ and j ∈ ∆. Note that the theorem statement is equivalent to the following statement: i and j are
inseparable if and only then at least one component DAG contains a ∆-through path from i to j such that the child of
i on the path is in ∆. We prove the two directions of this equivalent statement as follows.

18

Published in Transactions on Machine Learning Research (01/2024)

– Let i
1→ u

1
⇝ j without loss of generality such that u ∈ ∆. Suppose that (i− j) is not an emergent edge, and

set S separates them. Then, S must contain a node from de+
1 (u) to block the causal path i

1
⇝ j. However,

conditioning on a node from de+
1 (u) opens the path i

1→ u
1← y

1→ j, which contradicts with i and j being
separated by S. Therefore, i and j are inseparable.

– Let (i − j) be inseparable. By Theorem 4, without loss of generality, we have i
1→ u

1
⇝ j. We prove that

u ∈ ∆ by contradiction. Suppose the contrary and let u /∈ ∆. Consider S = pa(i) ∪ pa+(u) \ {i}. Let π be
an open path given S. Since pa(i) are given, π starts with i

ℓ→ edge. Let there exists a collider k ∈ deℓ(i)
on π, then some z ∈ deℓ(k) must be in S for π being open. Then, i

ℓ
⇝ k

ℓ
⇝ z implies that z /∈ pa(i) due to

acyclicity, and we have z ∈ pa+(u). However, for tree-condition on Gℓ, we must have k = z = u, and π is

blocked due to i
ℓ→ u

ℓ←. Therefore, there is no such collider k ∈ deℓ(i), and π is a causal path i
ℓ
⇝ j. Since

i
1→ u

1
⇝ j path is blocked by u ∈ S, π is of the form i

2→ v
2
⇝ j. If v ∈ ∆, π is a causal path from i to j in

which the child of i is in ∆, and the proof is completed. Suppose the contrary and let v /∈ ∆. Now, consider
S′ = pa(i) ∪ pa+(u) ∪ pa+(v) \ {i}. Let π′ be an open path given S′, and without loss of generality, π′ starts
with i

1→. Note that π′ has to contain a collider k ∈ de1(i) since the only causal path of the form i
1
⇝ j is

blocked by u. For π′ being open, some z ∈ de+
1 (k) is given in S′. We have z /∈ pa(i) due to acyclicity. If we

have z ∈ pa+(u), tree-structured G1 implies that k = z = u, and π′ is blocked by pa(u). Finally, if z ∈ pa+(v),
G1 being a tree implies that k = z = v, and π′ is blocked by pa(v). Hence, u /∈ ∆ is not possible, and we have
u ∈ ∆, and the proof is completed.

A.4 Proof of Lemma 1

We prove the desired result by investigating all possible cases. Since i and j are separable, at least one of them is not in
∆. Without loss of generality, assume that i /∈ ∆.

(i) If i /∈ an1(j) and i /∈ an2(j): Consider S = pa(i). Suppose that π is an open path between ī and j̄ given S̄ on
GC. Since pa(i) is given, without loss of generality, π starts with an edge i

1→. Since i /∈ an1(j), π contains a
collider k such that i

1
⇝ k

1←. For π to be open, a z ∈ de+
1 (k) must be in S = pa(i), which contradicts with

acyclicity. Therefore, S = pa(i) is a separating set for i and j.

(ii) If i ∈ an1(j), i /∈ an2(j), and j ∈ ∆: Let i
1→ u

1
⇝ j. Since i and j are separable, by Theorem 3, u /∈ ∆.

Consider S = pa(i) ∪ {pa+(u) \ i}. Suppose that π is an open path between ī and j̄ given S̄ on GC. Since

pa(i) is given, π starts with an edge i
ℓ→. Since u is given, π contains a collider k such that i

ℓ
⇝ k

ℓ←. For π
to be open, a z ∈ de+

ℓ (k) must be in S. However, z cannot be in pa(i) due to acyclicity. Also, z cannot be
in pa(u) since otherwise there would be multiple causal paths from i to u in Gℓ, which contradicts the tree
structure. Using the tree structure again, π starts with i

ℓ→ u
ℓ←. However, since pa+(u) is given, π cannot be

open. Therefore, S = pa(i) ∪ {pa+(u) \ i} is a separating set for i and j.

(iii) If i ∈ an1(j), i /∈ an2(j), and j /∈ ∆: Let i
1→ u

1
⇝ j. We investigate this case in two subcases. First, suppose

that j /∈ an2(i), and consider S = pa(j). Suppose that π is an open path between j̄ and ī given S̄ on GC.
Since pa(j) is given, π starts with an edge j

ℓ→. Since j is not an ancestor of i in either graph, π contains

a collider k such that j
ℓ
⇝ k

ℓ←. For π to be open, a z ∈ de+
1 (k) must be in S = pa(j), which contradicts

with acyclicity. Therefore, S = pa(j) is a separating set for i and j. Second, suppose that j ∈ an2(i), and let
j

2→ v
2
⇝ i. Since i and j are separable, by Theorem 3, at least one of u and v is not in ∆. Without loss of

generality, let u /∈ ∆ and consider S = pa(i) ∪ {pa+(u) \ i}. Following (ii), S is a separating set for i and j.

(iv) If i ∈ an1(j), i ∈ an2(j), and j ∈ ∆: Let i
1→ u

1
⇝ j and i

2→ v
2
⇝ j. Since i and j are separable, by

Theorem 3, u /∈ ∆ and v /∈ ∆. Consider S = pa(i) ∪ {pa+(u) \ i} ∪ {pa+(v) \ i}. Since pa(i) is given,

π starts with an edge i
ℓ→. Since u and v are given, π contains a collider k such that i

ℓ
⇝ k

ℓ← without
loss of generality. For π to be open, a z ∈ de+

ℓ (k) must be in S. However, z cannot be in pa(i) due to
acyclicity. Also, z cannot be in pa(u) (or pa(v)) since otherwise, there would be multiple causal paths from

19

Published in Transactions on Machine Learning Research (01/2024)

i to u (or v) in Gℓ which contradicts with the tree structure. Using the tree structure again, π starts with
i

ℓ→ u
ℓ← (or i

ℓ→ v
ℓ←). However, since pa+(u) (and pa+(v)) is given, π cannot be open. Therefore,

S = pa(i) ∪ {pa+(u) \ i} ∪ {pa+(v) \ i} is a separating set for i and j.

(v) If i ∈ an1(j), i ∈ an2(j), and j /∈ ∆: Consider S = pa(j). Similar to the first subcase of (iii), S is a
separating set for i and j.

We have exhausted all possible cases. In summary, if i and j are separable, then at least one of the sets pa(i), pa(j),
pa(i) ∪ {pa+(u) \ i}, and S = pa(i) ∪ {pa+(u) \ i} ∪ {pa+(v) \ i} is a separating set for i and j. Note that the size
of these sets is upper bounded by 3d where d denotes the maximum in-degree of a node in a component DAG.

A.5 Proof of Lemma 2

We prove the four statements in order.

Proof of Case 1. There are three possible configurations for orientations of (i− k) and (j − k) pairs. We show that
only i→→ k ←← j is valid.

1. (i →→ k ←← j): By definition of the edge →→, without loss of generality, there exist paths i
1→ u

1
⇝ k and

j
2→ v

2
⇝ k where u, v ∈ ∆. Note that u and v are not necessarily distinct from k. Then, conditioning on k opens

the path

i
1→ u

1← y
2→ v

2← j (15)

since u and v are colliders on the path and y is a latent node. This implies that k /∈ S, and this is a valid case.

2. (k →→ i and k →→ j): Since i /∈ ∆ and j /∈ ∆, these orientations imply that (i− k) and (j − k) are not emergent
edges. Then, we have i

ℓ← k
ℓ→ j for all ℓ ∈ {1, 2}. Then, k must be contained S to separate i and j, which

contradicts with k /∈ S, and this is not a valid case.

3. (k →→ i and j →→ k): Without loss of generality and using Theorem 3, let j
1→ u

1
⇝ k

1→ i in which u ∈ ∆ and
k

2→ i. Note that u and k are not necessarily distinct. Since S separates i and j, it contains a node z ∈ de+
1 (u).

However, in this case, the path j
1→ u

1← y
1→ k

1→ i is opened since k /∈ S. Therefore, this is not a valid case.

Proof of Case 2. There are two possible configurations for (i− k). If k →→ i, then i
ℓ← k

ℓ← y
ℓ→ j path cannot be

blocked without conditioning on k, contradicting with k /∈ S. Then, we have i→→ k. Without loss of generality, let
i

1→ u
1
⇝ k for some u ∈ ∆. Note that S does not contain k. Otherwise i

1→ u
1← y

1→ j path would be open. Hence,
this is a valid case.

Proof of Case 3. There are three possible configurations for orientations of (i− k) and (j − k) pairs. We show that
two of them are valid.

1. (i→→ k and j →→ k): Since k /∈ ∆, this implies i
ℓ→ k

ℓ← j for all ℓ ∈ {1, 2}. Then, conditioning on k opens the
path i

ℓ→ k
ℓ← j for all ℓ ∈ {1, 2}. This implies that k /∈ S, and this is a valid case.

2. (i ←←→→ k and j ←←→→ k): By using Case 2 of Theorem 3, without loss of generality, we have i
1→ u

1
⇝ k and

k
2→ v

2
⇝ i for some u, v ∈ ∆. There are two possibilities for (j−k). First, k

1→ z
1
⇝ j and j

2→ w
2
⇝ k for some

z, w ∈ ∆. However, in this case, we have i
1→ u

1
⇝ j and j

2→ w
2
⇝ i, which implies that i and j are inseparable

by Theorem 3 and contradicts with the premise that i and j are separable. Then, we must have k
2→ z

2
⇝ j and

j
1→ w

1
⇝ k for some z, w ∈ ∆. In this case, conditioning on k opens up the path i

1→ u
1← y

2→ w
2← j. This

implies that k /∈ S, and this is a valid case.

20

Published in Transactions on Machine Learning Research (01/2024)

3. (i→→ k and j ←←→→ k): By using the Case 2 of Theorem 3, without loss of generality we have

j
1→ u

1
⇝ k

1← i and i
2→ k

2→ v
2
⇝ j (16)

where u, v ∈ ∆. Since k /∈ S, some z ∈ de+
2 (v) is given in S to block the latter path. Then, for the path

i
2→ k

2→ v
2← y

1→ u
1← j to be blocked, S does not contain any node in de+

1 (u). However, this implies that
j

1→ u
1
⇝ k

1← i is open given S, which yields a contradiction. Hence, this is not a valid case.

Proof of Case 4. There are six possible configurations for orientations of (i− k) and (j − k) pairs. We show that
three of them are valid.

1. (i→→ k and j →→ k): Since k /∈ ∆, this implies i
ℓ→ k

ℓ← j for all ℓ ∈ {1, 2}. Then, conditioning on k opens the
path i

ℓ→ k
ℓ← j for all ℓ ∈ {1, 2}. This implies that k /∈ S, and this is a valid case.

2. (i ←←→→ k and j →→ k): By Case 2 of Theorem 3, without loss of generality, we have i
1→ u

1
⇝ k

1← j and
j

2→ k
2→ v

2
⇝ i where u, v ∈ ∆. Since i is not an ancestor of j in either graph, i and j can be separated. Also,

conditioning on k opens up the path i
1→ u

1← y
1→ j. This implies that k /∈ S, and this is a valid case.

3. (k →→ i and j →→ k): Since k /∈ S, without loss of generality i
1← k

1← j path is open given S. Hence, this is not a
valid case.

4. (i →→ k and k →→ j): Since k /∈ ∆, we have i
1→ k, i

2→ k, and without loss of generality, k
1→ u

1
⇝ j where

u ∈ ∆. To block the path i
1→ k

1→ u
1
⇝ j, some z ∈ de1(u) must be conditioned on. However, doing so opens

up to the path i
1→ k

1← u
1← y

1→ j. Hence, i and j cannot be separated without conditioning on k. Therefore,
this is not a valid case.

5. (k →→ i and k →→ j): The paths i
ℓ← k

ℓ→ u
ℓ
⇝ j, and i

ℓ← k
ℓ→ u

ℓ← y
ℓ→ j cannot be blocked simultaneously

without conditioning on k. Therefore, this is not a valid case.

6. (i ←←→→ k and k →→ j): Without loss of generality, we have i
1→ u

1
⇝ k and k

2→ v
2
⇝ i where u, v ∈ ∆. For

k →→ j, there are two possibilities. If k
1→ z

1
⇝ j for some z ∈ ∆, we have i

1→ u
1
⇝ k

1
⇝ j. Subsequently,

i→→ j which contradicts with i and j being separable. Therefore, we have k →→ j occur in the second graph as
k

2→ z
2
⇝ j. Conditioning on k opens up the path i

1→ u
1← y

2→ j since k ∈ an1(u). This implies that k /∈ S,
and this is a valid case.

A.6 Proof of Lemma 3

Recall that using mixture faithfulness assumption and Theorem 1, we have that Xi ⊥⊥ Xj | XS if and only if
i ⊥⊥M j | S in composite DAG GC. Then, if (i − j) ∈ EM, either there is an edge between i and j in at least
one component DAG or (i − j) is an emergent edge. For the latter case, the inverse of the sufficient conditions for
separability statements in Theorem 2 exactly gives the statements of this lemma.

A.7 Proof of Lemma 4

If there is an edge between i and j in at least one of the component DAGs, then Xi and Xj are not independent for any
conditioning set, and we have (i− j) ∈ EM. The inverse of the necessary and sufficient conditions for separability
statements in Theorem 3 exactly gives the statements of this lemma.

B Generalization to an Arbitrary Number of Component DAGs

In this section, we show that the results presented in Section 4 can be readily extended to a mixture of m > 2 DAGs. To
this end, we extend all the definitions in Section 2 for m component DAGs. We skip repeating the generalizations of
simple definitions that are apparent from the context and just present the important ones here.

21

Published in Transactions on Machine Learning Research (01/2024)

We consider m component DAGs, {Gℓ ≜ (V, Eℓ) : ℓ ∈ [m]} with associated distributions {pℓ : ℓ ∈ [m]}. Then, the
definition of ∆ is generalized as

∆ ≜ {i ∈ V : ∃ℓ, ℓ′ ∈ [m] such that pℓ(Xi | Xpaℓ(i)) ̸= pℓ′(Xi | Xpaℓ′ (i))} . (17)

Latent random variable L ∈ [m] accounts for the true model underlying the observed data, where L = ℓ specifies that
the true model is pℓ. We denote the probability mass function (pmf) of L by q. Then,

pM(x) ≜
∑

ℓ∈[m]

q(ℓ) · pℓ(x) . (18)

Accordingly, the definition of union edges is updated as

EU ≜ {(i− j) : i, j ∈ V , ∃ℓ ∈ [m] : i
ℓ→ j} . (19)

The definition of the edges of the mixture graph GM remains the same. The definition of the emergent edge becomes:
The edge (i− j) in the mixture graph GM is called an emergent edge if the pair of nodes i and j are not adjacent in any
Gℓ, ℓ ∈ [m], but become inseparable in pM. The set of emergent edges is given by

EE ≜ {(i− j) : i, j ∈ V, (i− j) /∈ EU ∧ ∄A ⊆ V \ {i, j} : Xi ⊥⊥ Xj | XA} . (20)

We note that Theorem 1 is already given for a mixture of m DAGs in (Saeed et al., 2020). Hence, we can still use it for
inferring separation statements in composite DAG GC.

For generalizing our separability result for general graphs (Theorem 2), we generalize its equivalent form Theorem 4
presented in Appendix A.

Theorem 5 Consider nodes i, j ∈ V such that i and j are not adjacent in any of the component DAGs, i.e., (i−j) /∈ EU.

Case 1) i ∈ ∆ and j ∈ ∆: i and j are always inseparable, i.e., (i− j) is an emergent edge.

Case 2) i /∈ ∆ and j /∈ ∆: If i and j are inseparable, then there exist two component DAGs Gℓ, Gℓ′ such that Gℓ

contains a ∆-through path from i to j and Gℓ′ contains a ∆-through path from j to i.

Case 3) i /∈ ∆ and j ∈ ∆: If i and j are inseparable, then at least one component DAG contains a ∆-through path
from i to j.

Proof Note that Case 1 and Case 3 are identical to those of Theorem 4, and their proofs follow identically. Proof
of Case 2 follows similarly as well. For i /∈ ∆ and j /∈ ∆, we have paℓ(i) = paℓ′(i) and paℓ(j) = paℓ′(j) for all
ℓ, ℓ′ ∈ [m]. Let the pair (i− j) be inseparable and consider the set S = pa(i) ∪ pa(j). Then, there exists an open path
π between ī and j̄ given S̄ on composite DAG GC. Since pa(i) is given, any path that starts with i

ℓ← is blocked for all
ℓ ∈ [m]. Without loss of generality, let π start with an edge i

1→. The case of y /∈ π follows identically to that of proof
of Theorem 4. Let y ∈ π. Without loss of generality, suppose that π contains i

1
⇝ k

1← . . . y and j
2
⇝ k′ 2← . . . y. For

π to be open, a z ∈ de+
1 (k) must be given in S = pa(i) ∪ pa(j), which implies that k ∈ an1(j). Subsequently, i

1
⇝ j.

Repeating the same line of arguments, we find that j
2
⇝ i. Finally, note that if none of the nodes on the path i

1
⇝ j is

not contained in ∆, then we have the same path in G2 as i
2
⇝ j, which contradicts with j

2
⇝ i. Therefore, there exist

∆-through paths between i and j in opposite directions in component DAGs G1 and G2.

Next, we generalize our separability result for a mixture of tree DAGs (Theorem 3).

Theorem 6 (Separability in Tree Structures – Necessary and Sufficient Conditions) Suppose that G1, . . . ,Gm are
tree-structured DAGs. Consider nodes i, j ∈ V such that i and j are not adjacent in any component DAG, i.e.,
(i− j) /∈ EU.

Case 1) i ∈ ∆ and j ∈ ∆: i and j are always inseparable.
Case 2) i /∈ ∆ and j /∈ ∆: i and j are separable if and only if there does not exist Gℓ, Gℓ′ such that the two DAGs

contain ∆-through paths between i and j in opposite directions such that the children of i and j on the paths
are in ∆.

22

Published in Transactions on Machine Learning Research (01/2024)

2 3 4 5
Number of component DAGs

0.70

0.75

0.80

0.85

0.90
n = 8

3k
10k
30k
100k

(a) Union edges recall rates

2 3 4 5
Number of component DAGs

0.3

0.4

0.5

0.6

0.7

0.8 n = 8

3k
10k
30k
100k

(b) Emergent edges recall rate

Figure 6: Skeleton recovery results for n = 8 at varying number of component DAGs and number of samples

Case 3) i /∈ ∆ and j ∈ ∆: i and j are separable if and only if none of the component DAGs contains a ∆-through
path from i to j such that the child of i on the path is in ∆.

Proof The proof follows almost identically to the proof of Theorem 3 by setting ℓ = 1 and ℓ′ = 2 without loss of
generality, and using Theorem 5 instead of Theorem 4.

Finally, by using Theorem 6 instead of Theorem 3, Lemma 2 can be readily generalized to a mixture of m tree-structured
DAGs.

C Additional Simulations

C.1 An Arbitrary Number of Component DAGs

In this section, we empirically support our claims in Section B that our approach can be generalized to a mixture of
an arbitrary number of DAGs. To this end, we repeat the simulations in Section 5 for mixtures of m ∈ {2, 3, 4, 5}
component DAGs.

Figure 6a shows that the recall rate of union edges decreases as m increases. This is not surprising since many union
edges become weaker as m increases in the sense that only 1/m-th of all samples come from the model that the edge
belongs to (unless the edge is shared over all components). That being said, the performance is still stronger than the
recall rates of emergent edges, which we comment on next.

Figure 6b shows that there is no apparent change in the performance of recovering emergent edges in the skeleton of
the mixture graph. This interesting observation can be explained by the effect of the number of component DAGs in
two opposite directions. First, increasing m also increases the size of ∆ as more nodes are likely to be affected by the
changes in the environment. However, the number of union edges also increases as m increases. This, in turn, reduces
the number of possible emergent edge pairs. As a result, the emergent recall rates remain around the same values as m
increases.

C.2 The Choice of CI Test

In the experiments in Section 5, we have used a partial correlation test as a CI test, similar to the most closely related
work to ours which also uses a partial correlation test even though the true mixture distribution is not Gaussian (Saeed
et al., 2020). We note that there exist more sophisticated alternatives such as generalized covariance measure (GCM)
(Shah & Peters, 2020), kernel-based conditional independence test (KCI) (Zhang et al., 2011), or Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2007). However, the partial correlation test is much faster than these
alternatives and usually achieves comparable performance (Mooij & Claassen, 2020). Still, out of comprehensiveness,

23

Published in Transactions on Machine Learning Research (01/2024)

103 104

Number of samples from each component DAG

0.0

0.2

0.4

0.6

0.8

1.0 n = 6

partial corr: union-edges-recall
partial corr: emergent-edges-recall
GCM: union-edges-recall
GCM: emergent-edges-recall

(a) Skeleton recovery results for n = 6

103 104

Number of samples from each component DAG

0.0

0.2

0.4

0.6

0.8

1.0 n = 8

partial corr: union-edges-recall
partial corr: emergent-edges-recall
GCM: union-edges-recall
GCM: emergent-edges-recall

(b) Skeleton recovery results for n = 8

Figure 7: Comparison of partial correlation and GCM CI tests at skeleton recovery

0.50 0.60 0.70 0.80 0.90 0.95 0.99
Mixing rate

0.90

0.92

0.94

0.96

0.98

1.00 n = 8

3k
10k
30k
50k

(a) Skeleton precision rates

0.50 0.60 0.70 0.80 0.90 0.95 0.99
Mixing rate

0.2

0.3

0.4

0.5

0.6

n = 8

3k
10k
30k
50k

(b) Emergent edges recall rate

0.50 0.60 0.70 0.80 0.90 0.95 0.99
Mixing rate

0.65

0.70

0.75

0.80

0.85

n = 8

3k
10k
30k
50k

(c) Union edges recall rates

Figure 8: Skeleton recovery results for n = 8 at varying mixing rate and number of samples

we repeat a subset of the simulations reported in Section 5 using GCM as CI test and compare the results with that of
the partial correlation test.

We use the same setting as in Section 5 to generate mixture models and repeat the experimental procedure for 100
randomly generated tree pairs for s ∈ {1e3, 3e3, 1e4} number of samples. Figures 7a and 7b show that there is
no apparent difference in the performance of skeleton recovery while using either partial correlation or GCM tests.
Therefore, the observations made in Section 5 remain the same when the partial correlation test is replaced with the
GCM test.

C.3 Varying the Mixing Rate

In Section 5, we have used an equal number of samples for each component DAG while creating the mixture
model. In this section, we investigate the effect of varying this mixing rate. Specifically, we consider n = 8
nodes and total number of samples s ∈ {3e3, 1e4, 3e4, 5e4} while varying the ratio of the dominant distribution in
{0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. We repeat the experiments 500 times and report the average results for skeleton
recovery in Figure 8.

Figure 8a shows that the very high precision rates are preserved even at extreme mixing rates of 0.95 and 0.99. The
more important observation is regarding the recall rates. Figure 8b and Figure 8c show that the recall rates of both
union edges and emergent edges are not significantly affected while varying the mixing rate from 0.5 to 0.8. However,
when one of the models in the mixture becomes more dominant, indicated by a mixing rate over 0.9, the performance
decreases significantly. This is, in fact, not surprising due to the following reason: When one model becomes extremely
dominant in the mixture, then two edge types become weaker, (i) the emergent edges that arise due to mixing of the
components, and (ii) the edges exist in the minor model, which accounts for part of the union edges. Figure 8b illustrates
the first observation.

24

Published in Transactions on Machine Learning Research (01/2024)

0.80 0.85 0.90 0.95 0.99
Mixing rate

0.5

0.6

0.7

0.8

0.9

1.0
n = 8, s = 30000 samples

union edges recall
E1 recall
E2 recall

Figure 9: Skeleton recovery results for n = 8 at varying mixing rate and number of samples

104 105

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0 n = 8

equal noise var: union recall
unequal noise var: union recall
equal noise var: emergent recall
unequal noise var: emergent recall

Figure 10: Skeleton recovery results for n = 8 at varying mixing rate and number of samples

Next, we scrutinize further to understand the behavior in Figure 8c better. We break down the union edges into E1 and
E2 components, for which E1 corresponds to the edges that exist in the dominant model. Note that if an edge is shared
in both models, then it is included in both E1 and E2. Figure 9 shows that, in accordance with our expectations, the
performance degradation is due to the edges of the minor model. Specifically, recall rates of E1 become higher and
recall rates of E2 become smaller as the ratio of the samples from G1 increases. This is not surprising since edges in E2
become weaker in the mixture model. This result can guide a practitioner on which approach to use when treating a
mixture model, e.g., treating the model as a mixture if each component model is responsible for at least 10% of the
samples, or treating it is as a single model and dealing with weak edges using a different method if the minor model is
responsible for only a few percent of the data samples.

C.4 Changing the Noise Variance

In the simulations presented in the previous sections, we have used an equal noise variance 1 as explained in the
experimental setup. We repeat the same experimental procedure with unequal noise variances such that the noise
variance of each node is sampled uniformly from [0.5, 1.5]. Figure 10 shows that the equal and unequal noise variance
settings result in almost identical performances at the recovery of both emergent and union edges.

25

	Introduction
	Motivation
	Contribution
	Related Work

	Separability Framework for DAG Mixtures
	Causal Discovery Objective
	Separability Analysis in Mixture Graphs
	Separability in General Graphs
	Properties of Tree Mixtures
	Algorithmic Perspective

	Empirical Evaluations
	Discussion
	Proofs of the Main Results
	Invariant conditional distributions and parent sets
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Generalization to an Arbitrary Number of Component DAGs
	Additional Simulations
	An Arbitrary Number of Component DAGs
	The Choice of CI Test
	Varying the Mixing Rate
	Changing the Noise Variance

